Latest recommendations
Id | Title * | Authors * | Abstract * | Picture * | Thematic fields * | Recommender | Reviewers▲ | Submission date | |
---|---|---|---|---|---|---|---|---|---|
20 Sep 2023
Structify-Net: Random Graph generation with controlled size and customized structureRemy Cazabet, Salvatore Citraro, Giulio Rossetti https://doi.org/10.48550/arXiv.2306.05274A model petting zoo for interacting with network structureRecommended by Leto Peel based on reviews by 2 anonymous reviewersIf you work, study or play in network science then chances are you have generated a network. Whether or not you have a real-world system to analyse, synthetic networks play an important role in network science. Generating networks of a chosen size can provide a null model for a statistical test, a test bed for new algorithms or the basis for studying the interplay between structure and dynamics in complex systems. Consequently network science literature contains a wide array of network models: some designed as processes to replicate observed properties and others for the purposes of statistical inference. However, these models have different parameters and constraints associated with their generative models, may or may not have the ability to control for random noise and do not always have readily available software implementations, thus making them unavailable to network science practitioners. The article of Cazabet et al. (2023) introduces a software "zoo, " called Structify-Net, that contains a range of models that the authors have captured from the wild. The authors have focused on developing a framework that enables the generation networks of a chosen size, according to number of nodes and edges, and provides the means to control for randomness, by interpolating between the specified structure and a random graph. The article also discusses an interesting use case to examine the interplay between network structure and node attributes, which might compliment methods based on permutation tests (Bianconi et al. 2009, Ehrhardt and Wolfe 2019). Structify-Net presents some interesting future opportunities. For instance, the independence that Structify-Net imposes on edge ranking (defined by the model) and the expected number of edges (defined by the user) might offer a route towards exploring network growth or evolution. Like any zoo Structify-Net is not complete in that there are many more exotic "species" that the authors, or perhaps others in the network science community, may later collect. Collecting more model implementations to align with reviews of network models (Goldenberg et al. 2010) together with methods of statistical inference has the potential to lay the foundations for the ever important bridge between theory and practice in network science (Peel et al. 2022). References Bianconi, Ginestra, Paolo Pin, and Matteo Marsili (2009) Assessing the Relevance of Node Features for Network Structure. Proceedings of the National Academy of Sciences 106, 28: 11433–38. https://doi.org/10.1073/pnas.0811511106 Cazabet, Remy, Salvatore Citraro, and Giulio Rossetti (2023) Structify-Net: Random Graph Generation with Controlled Size and Customized Structure. arXiv, ver. 2 peer-reviewed and recommended by Peer Community in Network Science. https://doi.org/10.48550/arXiv.2306.05274 Ehrhardt, Beate, and Patrick J. Wolfe (2019) Network Modularity in the Presence of Covariates’. SIAM Review 61, 2: 261–76. https://doi.org/10.1137/17M1111528 Goldenberg, Anna, Alice X. Zheng, Stephen E. Fienberg, and Edoardo M. Airoldi (2010) A Survey of Statistical Network Models. Foundations and Trends in Machine Learning 2, 2: 129–233. https://doi.org/10.1561/2200000005 Peel, Leto, Tiago P. Peixoto, and Manlio De Domenico (2022) Statistical Inference Links Data and Theory in Network Science. Nature Communications 13, 1: 6794. https://doi.org/10.1038/s41467-022-34267-9 | Structify-Net: Random Graph generation with controlled size and customized structure | Remy Cazabet, Salvatore Citraro, Giulio Rossetti | <p>Network structure is often considered one of the most important features of a network, and various models exist to generate graphs having one of the most studied types of structures, such as blocks/communities or spatial structures. In this art... | Algorithms for Network Analysis, Clustering in networks, Community structure in networks, Geometry and topology of networks or graphs, Graph models, Network models, Random graphs, Spatial networks, Structural network properties | Leto Peel | Anonymous, Anonymous | 2023-06-09 10:41:32 | View | |
14 Jun 2021
Behavioural synchronization in a multilevel society of feral horsesTamao Maeda, Cedric Sueur, Satoshi Hirata, Shinya Yamamoto https://doi.org/10.1101/2021.02.21.432190Feral horses synchronize their collective behavior at multiple levels of organizationRecommended by Brenda McCowan based on reviews by Frédéric Amblard, Krishna Balasubramaniam, Krishna Balasubramaniam and 1 anonymous reviewerIn their article “Behavioural synchronization in a multilevel society of feral horses”, Maeda and colleagues (2021) use stochastic multi-agent based modeling to explore the degree to which feral horses synchronize their behavior across multiple levels of organization. The authors compare a drone-derived empirical data set on a feral population of horses with simulated data from multi-agent-based models to determine whether behavioral synchronization of resting and movement states in a multilevel society can be described by one of three models: A) independent model in which horses do not synchronize, B) anonymous model in which horses synchronize with any individual in any unit, C) unit-level social model in which horses synchronize only within units and D) herd-level social model in which horses synchronize across and within units, but internal synchronization is stronger. In a series of 100 simulations for each of seven different models, the authors conclude that evidence for the herd-level model had the strongest support in relation to the empirical data. This finding suggests that connections among individuals in such multi-level societies are rather complex in that local connections are not the only interactions driving social behavior, and specifically synchronization. This approach could be successfully applied to a number of different species that exhibit multi-level organization and possibly fission-fusion dynamics. This study is especially innovative and interesting for three major reasons. First, the use of drone technology to successfully identify individual animals and generate social networks is highly novel and permits the study of large multi-level social groups of animals that previously have been challenging to study due to limitations in collecting data at an appropriate scale. Second, the comparison of multi-agent-based models with actual empirical data is highly applauded. Most agent-based studies design their parameters from previous empirical studies, (sometimes with questionably simple assumptions) but rarely do they actually compare model outputs to their own empirical data. This is an important next step in the burgeoning field of agent-based modeling. Finally, this study sheds light on the utility of using relatively simple mathematical models to explain highly complex behavior. It also highlights that feral horses can synchronize their behavior beyond clustered local connections which suggests that they possess the cognitive ability to track the behavior of individuals at higher social orders. As the authors state, in a multilevel society, inter-unit distance should be moderate, that is “not too close but not too far” because this strategy simultaneously avoids inter-unit competition while also providing the benefits of social buffering that comes with large group living, such as protection from bachelors or predators. As the authors dutifully note, there were also some limitations to the study: (1) the relatively sparse empirical dataset that made it difficult to resolve the relative fitness of the two herd-level models (absolute versus proportional social models), (2) the lack of a temporal component that would provide a better understanding on how synchronization flows through the social/spatial network, and (3) the limited variation in the parameters tested which constrained identification of their true function in the model. Such limitations, however, provide fruitful avenues for further development of the model in future studies. Overall then, this study provides new insights into the processes underlying the behavioral synchronization process and thus nicely contributes to the understanding of collective behaviors in complex animal societies as well as the evolution and functional significance of multi-level animal societies. This study is a fine addition to both the fields of agent-based modeling and the evolution of collective behavior in complex societies. I thus highly endorse its publication. References Maeda T, Sueur C, Hirata S, Yamamoto S (2021) Behavioural synchronization in a multilevel society of feral horses. bioRxiv, 2021.02.21.432190, ver. 3 peer-reviewed and recommended by Peer community in Network Science. https://doi.org/10.1101/2021.02.21.432190 | Behavioural synchronization in a multilevel society of feral horses | Tamao Maeda, Cedric Sueur, Satoshi Hirata, Shinya Yamamoto | <p style="text-align: justify;">Behavioural synchrony among individuals is essential for group-living organisms. It is still largely unknown how synchronization functions in a multilevel society, which is a nested assemblage of multiple social lev... | Animal networks, Biological Networks, Dynamics on networks, Network models, Social networks, Synchronization in networks | Brenda McCowan | Krishna Balasubramaniam, Brianne Beisner, Frédéric Amblard | 2021-02-23 02:46:18 | View |
MANAGING BOARD
Eleni Akrida
Corinne Bonnet
Alecia Carter
Michel Grossetti
Norbert Hounkonnou
Matthieu Latapy
Brenda McCowan
Elisa Omodei
Cédric Sueur