MAEDA Tamao's profile
avatar

MAEDA Tamao

  • Wildlife Research Center, Kyoto University, Kyoto, Japan
  • Animal networks, Biological Networks, Clustering in networks, Communication networks, Dynamics on networks, Graph algorithms, Network measures, Network models, Random graphs, Resilience and robustness in networks, Social networks

Recommendations:  0

Review:  1

Review:  1

10 Jan 2024
article picture

Differential effects of multiplex and uniplex affiliative relationships on biomarkers of inflammation

Multiplex vs. Uniplex: Deciphering the Differential Health Impacts of Complex Social Interactions in Rhesus Macaques

Recommended by based on reviews by Tamao Maeda and 2 anonymous reviewers

Social relationships are recognized as an important age-related mediator of health in humans and fitness-related traits in animals (Sueur et al., 2021). Vandeleest et al. (2024) is a pioneering exploration into the complex interplay between social relationships and health in rhesus macaques. It breaks new ground by differentiating between two types of affiliative relationships – multiplex (engaging in multiple types of affiliative behaviors like grooming and contact sitting) and uniplex (involving only one type of behavior, such as grooming) (Beisner et al., 2020). The study's crux lies in its novel approach to understanding how these differing social interactions correlate with biomarkers of inflammation, namely pro-inflammatory cytokines like IL-6 and TNF-alpha.

The research is innovative in its use of social network analysis (Sosa et al., 2021), allowing for a nuanced view of the rhesus macaques' social dynamics. It reveals that multiplex grooming networks, characterized by more modular structures and kin bias, are associated with lower inflammation levels. This is in contrast to uniplex grooming networks, where a stronger link to social status correlates with higher inflammation. These findings suggest that multiplex relationships could serve as supportive, health-promoting bonds, while uniplex relationships might be more transactional, with possible physiological costs.

Moreover, the study's results highlight the importance of the diversity of affiliative interactions within a dyad. It posits that relationships involving multiple types of affiliative behaviors may have different implications for health and well-being compared to those based on a single behavior type, even if interaction rates are similar. This insight opens up new avenues for understanding the health implications of social behaviors in non-human primates and potentially in humans (Sueur et al., 2021).

Furthermore, the paper provides a comprehensive analysis of the network structures, examining kin bias, clustering, modularity, and associations with dominance rank. It also evaluates the correlations between individual network positions and health markers, offering a multifaceted understanding of how social networks influence physical well-being.

In essence, this research makes a significant contribution to our understanding of the link between sociality and health. It underscores the complexity of social relationships (Moscovice et al., 2020) and their varied impacts on health, suggesting that the nature of social bonds (multiplex vs. uniplex) plays a critical role in determining their health consequences. This study not only enhances our comprehension of primate social behavior but also has broader implications for the fields of social neuroscience, behavioral ecology, and health psychology.

References

Beisner, B., Braun, N., Pósfai, M., Vandeleest, J., D’Souza, R., & McCowan, B. (2020). A multiplex centrality metric for complex social networks: Sex, social status, and family structure predict multiplex centrality in rhesus macaques. PeerJ, 8, e8712. https://doi.org/10.7717/peerj.8712

Moscovice, L. R., Sueur, C., & Aureli, F. (2020). How socio-ecological factors influence the differentiation of social relationships: An integrated conceptual framework. Biology Letters, 16(9), 20200384. https://doi.org/10.1098/rsbl.2020.0384

Sosa, S., Sueur, C., & Puga-Gonzalez, I. (2021). Network measures in animal social network analysis: Their strengths, limits, interpretations and uses. Methods in Ecology and Evolution, 12(1), 10–21. https://doi.org/10.1111/2041-210X.13366

Sueur, C., Quque, M., Naud, A., Bergouignan, A., & Criscuolo, F. (2021). Social capital: An independent dimension of healthy ageing. Peer Community Journal, 1. https://doi.org/10.24072/pcjournal.33

Vandeleest, J. J., Wooddell, L. J., Nathman, A. C., Beisner, B. A., & McCowan, B. (2024). Differential effects of multiplex and uniplex affiliative relationships on biomarkers of inflammation. bioRxiv, ver. 4 peer-reviewed and recommended by Peer Community in Network Science. https://doi.org/10.1101/2022.11.01.514247

avatar

MAEDA Tamao

  • Wildlife Research Center, Kyoto University, Kyoto, Japan
  • Animal networks, Biological Networks, Clustering in networks, Communication networks, Dynamics on networks, Graph algorithms, Network measures, Network models, Random graphs, Resilience and robustness in networks, Social networks

Recommendations:  0

Review:  1