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Abstract

Statistical analysis and node clustering in hypergraphs constitute an emerging topic
suffering from a lack of standardization. In contrast to the case of graphs, the con-
cept of nodes’ community in hypergraphs is not unique and encompasses various distinct
situations. In this work, we conducted a comparative analysis of the performance of
modularity-based methods for clustering nodes in binary hypergraphs.

To address this, we begin by presenting, within a unified framework, the various
hypergraph modularity criteria proposed in the literature, emphasizing their differences
and respective focuses. Subsequently, we provide an overview of the state-of-the-art
codes available to maximize hypergraph modularities for detecting node communities in
hypergraphs. Through exploration of various simulation settings with controlled ground
truth clustering, we offer a comparison of these methods using different quality measures,
including true clustering recovery, running time, (local) maximization of the objective,
and the number of clusters detected.

Our contribution marks the first attempt to clarify the advantages and drawbacks of
these newly available methods. This effort lays the foundation for a better understanding
of the primary objectives of modularity-based node clustering methods for binary hyper-
graphs.

Keywords: community detection; higher-order interaction; hypergraph; modularity;
node clustering

1 Introduction

The interest in higher-order interactions stems from the recognition that many phenomena
are inherently more complex than what can be effectively represented by pairwise relation-
ships alone. While graphs model pairwise interactions, hypergraphs generalize this concept
by capturing higher-order interactions involving more than two elements. This extension
provides a more expressive framework for modeling intricate dependencies and interactions
in various fields, ranging from social network analysis (early acknowledged in Simmel, 1950)
or co-authorship relations (Roy and Ravindran, 2015) to ecological systems (Muyinda et al.,

1

mailto:very.poda@gmail.com
mailto:catherine.matias@math.cnrs.fr


2020), neurosciences (Chelaru et al., 2021) or even chemistry (Flamm et al., 2015). We re-
fer to Battiston et al. (2020); Bick et al. (2023); Torres et al. (2021) for recent reviews on
higher-order interactions.

With the emergence of hypergraph datasets (see for e.g. Lee et al., 2021) to model higher-
order interactions, the question of nodes clustering and, more specifically, the detection of
communities in hypergraphs arises. In the context of graphs, the seminal paper by Newman
and Girvan (2004) introduced the concept of modularity (commonly known as the Newman-
Girvan modularity), paving the way for a flourishing literature on community detection in
networks. In the context of hypergraphs, the past few years have witnessed the surge of
modularity-based proposals for hypergraph community detection. One of the first challenges
is to propose a modularity criterion that measures the extent to which a hypergraph is
composed of communities. This raises a more fundamental question: What is a community
of nodes in a hypergraph? While in the context of graphs, a community is simply a set
of nodes with more within-cluster interactions than between-clusters ones, generalizing that
concept to hypergraphs is not immediate. As hypergraph interactions have a heterogeneous
size (i.e., the number of nodes they contain), a primary issue is whether one should weigh
the links with respect to (wrt) their sizes and put more emphasis on larger hyperedges (see
Figure 1 for an illustration). Consequently, various modularity criteria have recently emerged
in the literature.

Figure 1: On the left, a modular graph with two clusters is depicted, represented as circle-
blue and triangle-green nodes, respectively. In each cluster, the number of within-cluster
interactions is much larger than the between-clusters ones. On the right, a hypergraph is
shown using the same set of nodes, where each clique from the previous graph is replaced
by a hyperedge. In this hypergraph, the number of within-cluster interactions in each of the
two clusters is the same as the number of between-clusters interactions. Is this hypergraph
modular? Should we consider weighting hyperedges with respect to their sizes to analyze
how modular the hypergraph is?

For a long time now, the computer science literature has tackled hypergraphs by simpli-
fying them into graphs, employing two primary methods: the clique reduction graph, also
known as the two-section graph, and the star-expansion graph. In the clique reduction graph,
each hyperedge of a hypergraph is transformed into a clique in a graph over the same set of
nodes (as illustrated in Figure 1, where the graph on the left represents the clique reduction
of the hypergraph on the right). Conversely, the star-expansion graph constructs a bipartite
graph by treating the original vertex set as the first part and introducing a new vertex for
every original hyperedge in a second part. These parts are then connected whenever a node
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is contained in a hyperedge in the hypergraph. While the former reduction loses information
(the original hypergraph cannot be reconstructed from its clique reduction graph), the latter
transformation is one-to-one, given that the two parts are labeled (allowing the distinction
between original nodes and original hyperedges) and hypergraphs with self-loops and multiple
hyperedges are allowed. Consequently, a natural approach is to define hypergraph modularity
by relying on graphs. Figure 1 illustrates the limitations of such a method, where the clique
reduction graph (on the left) appears clearly modular, while one may question whether the
original hypergraph (on the right) should be considered modular or not.

In this article, we explore the current state-of-the-art and challenges posed by modularity-
based community detection methods in binary hypergraphs. In the context of graphs, Yang
et al. (2016) propose a comparative analysis of community detection algorithms for undirected
and binary graphs. In the same vein, we here restrict our attention to modularity-based meth-
ods whose performances for community detection in binary hypergraphs are compared. The
methodology is described in Section 2. After introducing general notation, we first present a
reformulated version of the different hypergraph modularities existing in the literature (Sec-
tion 2.2). The goal of this reformulation is to facilitate the comparison of concepts introduced
independently from each other and never fully connected before. To be a valuable concept, a
hypergraph modularity should come with a (local and/or heuristic) maximization algorithm
that outputs a node clustering. Available implementations of such algorithms are presented in
Section 2.3. To compare the different modularities and maximization algorithms, it is manda-
tory to work with synthetic datasets where ground truth clustering is known and hypergraph
statistics can be controlled. While in the graph context, recent years have seen the emergence
of benchmark datasets for such a task, as for instance the Lancichinetti-Fortunato-Radicchi
benchmark graph (LFR, Lancichinetti et al., 2008) used in Yang et al. (2016), there is yet
no such benchmark for hypergraphs. We thus rely on several models for generating synthetic
modular hypergraphs, described in Section 2.4. Then Section 3 describes our experiments:
which scenarios have been explored in each model generating method (Section 3.1) and quality
assessment through the lens of different measures, namely true clustering recovery, running
time, (local) maximization of the objective and the number of clusters detected (Section 3.2).
All the results are presented in Section 4 and a discussion follows in Section 5. The scripts
to reproduce the experiments are available online (see details and links in Section 6).

To conclude this introduction, we mention that there are other methods to cluster the
nodes of a hypergraph, such as spectral clustering approaches (Ghoshdastidar and Dukkipati,
2017; Chodrow et al., 2023) or model-based methods (Brusa and Matias, 2022a; Ruggeri et al.,
2023). It is also possible to cluster hyperedges instead of nodes (Ng and Murphy, 2022).
However, our focus in this work is on clustering nodes through modularity-based methods.

2 Material and methods

2.1 General notation and definitions

A hypergraph H = (V, E) is defined as a set of nodes V = {1, . . . , n} and a set of hyperedges
E ⊂ P(V ), where P(V ) is the set of all subsets of V . In other words, each hyperegde e ∈ E
is a subset of nodes in V (namely, e ⊂ V or e ∈ P(V )). A hypergraph can either be binary
(presence/absence of subsets of nodes) or weighted (also equivalently called multiple). In the
latter case, the hypergraph H = (V, E , w) comes with a weight function w : P(V ) → N ∪ {0}
such that ∀e /∈ E , we have w(e) = 0, and w(e) ∈ N otherwise. The weight counts how
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many times a hyperedge appears in the hypergraph. Multiple (i.e., weighted) hypergraphs
can be viewed as hypergraphs where the set of hyperedges E is allowed to be a multiset
(some hyperedges may appear several times). A binary hypergraph is a particular case of
a weighted hypergraph with weight function being the indicator function w(e) = 1{v ∈ e}
(i.e., each hyperedge has multiplicity 1). The size of a hyperedge e is the number of nodes
it contains |e| =

∑
v∈V 1{v ∈ e}. A hypergraph is said to be s-uniform if it only contains

hyperegdes of size s. Any 2-uniform hypergraph is simply a graph. We let Es denote the
subset of E of hyperedges with size s. We can allow hyperedges e ∈ E to be multisets of V , in
which case nodes may appear more than once in the same hyperedge. Such hypergraphs are
called multiset hypergraphs and can either be binary or multiple. In a multiset hypergraph,
each node v ∈ V has a multiplicity in hyperedge e ∈ E , denoted by me(v) ∈ N ∪ {0}, which
counts the number of times this node appears in that hyperedge. Moreover, the hyperedge size
accounts for the nodes multiplicity and becomes |e| =

∑
v∈V me(v). For example, a self-loop

{u, u} is a (multiset) hyperedge of size 2. In the following, unless otherwise stated, all sets can
be multisets in which case all counts include multiplicities (be it for nodes or for hyperedges).
A hypergraph is said simple whenever it is binary and non-multiset, i.e., neither nodes or
hyperedges may be repeated. The (weighted) degree degH(v) of a node v in a hypergraph
H is the (weighted) count of the hyperedges it belongs to, namely degH(v) =

∑
e∈E w(e).

The incidence matrix H of the hypergraph has size |V | × |E| and entries H(v, e) = 1{v ∈ e}
or me(v) for multiset hypergraphs. Note that we use the same notation H for a graph and
its incidence matrix, the difference should be clear from the context. Letting w = (w(e))e∈E
denote the (column) vector of the hyperedges weights and w⊺ its transpose, we obtain the
vectors of node degrees and hyperedges sizes as Hw and w⊺H, respectively. Two nodes are
said incident whenever they belong to a same hyperedge e ∈ E .

For any subset of nodes C ⊂ V , we define its volume:

VolH(C) =
∑
v∈C

degH(v),

and the (weighted) number of hyperedges whose nodes are all included in C:

eH(C) =
∑
e⊂C

w(e).

Note that VolH(V ) =
∑

s s|Es| and eH(V ) = |E| =
∑

s |Es|.
From a (weighted) hypergraph H = (V, E) we may construct its clique reduction graph

Gclique = (V,E). This graph has the same set of nodes V as the hypergraph and every
hyperedge e ∈ E in the hypergraph is reduced into a complete clique in the graph. In
other words, for any hyperedge e ∈ E with size |e| ≥ 2 and for any pair of incident nodes
u, v ∈ e, the graph Gclique contains the edge {u, v} ∈ E and only edges obtained in this
way are contained in E. The (weighted) adjacency matrix Aclique of the clique reduction
graph satisfies Aclique = Hdiag(w)H⊺, where H is the incidence matrix of the hypergraph
and diag(w) is the diagonal matrix induced by the vector of hyperedge weights w. In general,

self-loops are removed from Aclique and Aclique
uu is set to 0 for any u ∈ V . This can be done

directly by setting Aclique = Hdiag(w)H⊺ − DV where DV is the diagonal matrix of node
degrees (degH(v))v∈V .

A nodes clustering is a partition C = (C1, . . . , CK) of the set of nodes V into parts called
clusters. For any partition C = (C1, . . . , CK) of the set of nodes V and any subset e ⊂ V , we
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let e∩C = (e1, . . . , eJ) denote the partition of the subset e induced by C. It has J parts with
J ≤ K and is indeed a partition of e, namely

∀j ̸= k ∈ {1, . . . , J}, ej ̸= ∅, ej ∩ ek = ∅, ∪J
j=1ej = e.

The adjacent clusters of a node u ∈ V are the parts Ck that contain at least one node v ∈ Ck

that is incident to u, or in other words such that there is a hyperedge e ∈ E such that u, v ∈ e.
In this manuscript, the identity matrix is denoted by I (its size should be clear from the

context). We already used notation |S| for the cardinality of a set S (or a multiset), and
1{S} for the indicator function of an event S.

2.2 Modularities in hypergraphs

Different hypergraph modularity criteria have been proposed in the literature up to now (Ku-
mar et al., 2020; Kamiński et al., 2019a; Kamiński et al., 2021; Chodrow et al., 2021). We
recall these different quantities, using a unified presentation that highlights similarities and
differences between them. As we will see, these are all constructed in the same way, namely
the difference between a first term that is a specific hyperedge count and a second term that
in some cases corresponds to the expected value of this count under some null model, and
otherwise is a correction term. The differences between the expressions of those hypergraph
modularities come from: i) the type of hyperedges that are counted; ii) the null model used for
computing the expectation or the correcting term; iii) possible weights to each of these terms.

Kumar et al. (2020)’s definition of hypergraph modularity corresponds to a graph mod-
ularity as originally defined in Newman and Girvan (2004) and applied to a specific graph
choice. Considering the clique reduction graph of a hypergraph, Kumar et al. noticed that the
reduction does not preserve the node degrees: in the clique reduction graph Gclique, the degree
of a node differs from its initial value in the hypergraph H. Indeed, a simple computation
shows that

degGclique(v) =
∑
e∈E

H(v, e)w(e)(|e| − 1) ≥
∑
e∈E

H(v, e)w(e) = degH(v).

Thus, Kumar et al. (2020) simply modified the weights in the clique reduction graph to
preserve these degrees. Let DE = diag(|e|)e∈E denote the diagonal matrix of the hyperedges
sizes. We define the weighted clique reduction graph Gw-clique through its adjacency matrix
Aw-clique = (Aw-clique

uv )u,v∈V by

Aw-clique = Hdiag(w)(DE − I)−1H⊺ −DV .

The node degrees in this graph Gw-clique are equal to the initial node degrees in the hypergraph
H (where self-loops are discarded). This construction is equivalent to saying that for each
hyperedge e ∈ E , we create Gw-clique by forming a total of

(|e|
2

)
edges with weights w(e)/(|e|−

1), between any pair of nodes incident in the hypergraph H.
Then for any hypergraph H = (V, E) and any partition C = (C1, . . . , CK) of its set of
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nodes V , we let

Qw-clique(H, C) =
1

2|E|

K∑
k=1

∑
u,v∈Ck

(
Aw-clique

uv − degH(u) degH(v)∑n
i=1 degH(i)

)

=
1

2|E|

K∑
k=1

(
eGw-clique(Ck) − (VolH(Ck))2

VolH(V )

)
. (1)

Note that Qw-clique ranges in [−1; 1]. It is an average over all pairs of nodes u, v belonging

to the same cluster Ck of the difference between the weighted edge value Aw-clique
uv in the

weighted clique reduction graph and its expectation under a configuration model (Chung
and Lu, 2002) that accounts only for nodes degrees and plays the role of a null model. A
high value of modularity Qw-clique means dense connections in the weighted clique reduction
graph Gw-clique between the nodes within the same cluster and sparse connections between
nodes in different clusters. Going back to the hypergraph H, that means node pairs u, v ∈ V
belonging to the same cluster participate more in the same hyperedge than node pairs in
different clusters.

Kamiński et al. (2019a) introduce a strict hypergraph modularity such that only the
hyperedges e ∈ E entirely included in a same cluster contribute to increasing modularity,
which is in sharp contrast with the previous proposal. For any hypergraph H = (V, E) and
any partition C = (C1, . . . , CK) of its set of nodes V , we let

Qstrict(H, C) =
1

|E|

K∑
k=1

eH(Ck) −
∑
s≥2

|Es|
(

VolH(Ck)

VolH(V )

)s
 . (2)

Note that Qstrict also ranges in [−1; 1]. Here, the first term inside the sum accounts for the
number of hyperedges whose all nodes are within the same cluster. The second term comes
from a generalization of the Chung and Lu model to hypergraphs. Again, it plays the role
of an expected value of the first term eH(Ck) under some null model which preserves both
node degrees and the (weighted) number |Es| of size-s hyperedges. This quantity is called by
its authors the degree tax.

Kamiński et al. (2021) propose a more general modularity that accounts for the homo-
geneity of each hyperedge, namely, the fraction of its vertices that belong to the largest
cluster (provided it is more than 50%). For any subset C ⊂ V , any size s ≥ 2 and any
integer c ∈ {⌊s/2⌋ + 1, . . . , s}, we let es,cH (C) denote the number of size-s hyperedges that
have exactly c nodes included in their majority part C. With our previous notation, we have

eH(C) =
∑
s≥2

es,sH (C).

In the following, P(Bin(s, p) = c) =
(
s
c

)
pc(1−p)s−c is the probability that a Binomial random

variable with parameters (s, p) takes the value c. Then for any partition C = (C1, . . . , CK) of
the set of nodes, Kamiński et al. (2021) introduce the modularity

Qwsc(H, C) =
1

|E|

K∑
k=1

∑
s≥2

s∑
c=⌊s/2⌋+1

ws,c

[
es,cH (Ck) − |Es|P

(
Bin

(
s,

VolH(Ck)

VolH(V )

)
= c

)]
, (3)
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where ws,c ∈ [0, 1] are hyper-parameters to be specified. Note that we have

P
(

Bin
(
s,

VolH(Ck)

VolH(V )

)
= s

)
=

(
VolH(Ck)

VolH(V )

)s

so that (2) is a special case of (3) where ws,c = 1{c = s}. Different setups may be considered
for the hyper-parameters ws,c and we focus here on the choices for which an optimisation
algorithm is available, namely

ws,c =


1{c = s} strict setting,
1{c > s/2} majority setting,
c/s1{c > s/2} linear setting.

(4)

As already mentioned, the strict setting gives back Qstrict, already introduced in (2). For
the other 2 settings, we call the corresponding modularities Qmajority and Qlinear, respectively.

Finally, Chodrow et al. (2021) first defined a general symmetric modularity, where for
any partition C of the set of nodes, the contribution of a hyperedge e ∈ E to the modularity
of this partition is characterized only by the vector p whose entries pk count the number of
nodes in e belonging to the k-th largest part in e∩C. It is based on a general affinity function
Ω : P → R that modulates the weight of the contribution of each partition vector p, where
the set of partition vectors is

P = {p = (p1, . . . pJ); p1 ≥ · · · ≥ pJ ≥ 1, for some J ≥ 1}.

For instance, a s-tuple of nodes with s = 7 that are clustered by a partition C into the parts
{v1}; {v2, v3}; {v4}; {v5, v6, v7} induces the partition vector p = (3, 2, 1, 1). The symmetric
modularity from Chodrow et al. (2021) will thus account for the different clusters counts that
compose a hyperedge, treating all the clusters in an exchangeable way. We present the details
of this modularity in Section A from the Appendix. Then, the authors consider particular
cases of their general symmetric modularity, relying on specific forms of the affinity function
Ω (see Table 1 in that reference). However, an implementation of the algorithm for optimising
the induced specific modularities is available only for the all-or-nothing affinity function on
which we focus now.

The all-or-nothing modularity function is defined as:

Qaon(H, C) =

K∑
k=1

∑
s≥2

β̂s

 ∑
C′

k⊂Ck;|C′
k|=s

eH(C ′
k) − γ̂s(VolH(Ck))s

 , (5)

where β̂s and γ̂s are parameters estimated from the data. While in general we may expect
that both β̂s, γ̂s > 0 (see Section B in the Appendix for more details on these parameters),
we then recover in this expression a sum of difference terms between a count of specific
hyperedges, namely those entirely included in a cluster, and a correcting volume term. The
extra parameters β̂s, γ̂s might not seem natural at first. In fact, they appear as the result
of an approximate maximum likelihood approach in a specific degree-corrected hypergraph
stochastic blockmodel (DCHSBM), in the same way as Newman (2016) did in a graph context.

As a final remark, Chodrow et al. (2021) notice that considering the specific choices
β̂s = 1 and γ̂s = |Es|/VolH(V )s in their modularity Qaon, they recover (up to a scaling factor
and an additional term not depending on the partition C and which can thus be discarded)
the expression of the modularity Qstrict from (2). However, they argue that leaving these
parameters free (adapting to the data) lends important flexibility to their approach.
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Additional comments. We already highlighted similarities and differences between the
different modularities defined above. Let us add some more comments.

Two extreme cases are represented by the modularities Qw-clique and Qstrict, the former
being less stringent than the latter. Whenever a hyperedge is split by the partition C into
different clusters, it will be ignored by Qstrict but as soon as this hyperedge contains at
least 2 nodes in the same cluster, the modularity Qw-clique will account for it. The weakness
in Qw-clique lies in that the exact composition of each hyperedge in nodes falling into the
different clusters is captured only through pairs of nodes. The modularity Qwsc represents
a compromise between the 2 previous extremes: it accounts for homogeneous hyperedges,
namely hyperedges such that (at least) half of their nodes fall into a cluster that becomes a
majority cluster. In particular, Kamiński et al. (2021) argue that the hyper-parameters ws,c

may be chosen so that Qwsc well approximates Qw-clique because contributions in the latter
from parts that contain at most s/2 vertices may often be neglected. Finally, the modularity
Qaon is as strict as Qstrict and focuses on hyperedges with nodes split into a unique cluster
by the partition C. As already stressed, the major difference between Qstrict and Qaon lies
in that the latter, while summing similar differences as the former, weights differently each
terms in those differences (with weights adaptive to the data, as they are estimated from
these).

Note that possible self-loops in the hypergraph H never contribute to a modularity and
may thus be discarded from the dataset. However, we highlight that all these modularities
are developed for multiset hypergraphs, where nodes may be repeated in a same hyperedge.
In particular, the Chung and Lu null models (for graphs and hypergraphs) used in defining
modularities Qw-clique, Qstrict and Qwsc as well as the DCHSBM underlying the definition of
the modularity Qaon, all rely on models for multiset hypergraphs. While it is known in the case
of graphs that this is inadequate (Massen and Doye, 2005; Cafieri et al., 2010; Squartini and
Garlaschelli, 2011), that assumption has not yet been discussed in the context of hypergraph
modularities. It might be that the computational simplifications enabled by this assumption
prevent from any attempt not to use it (see for e.g. Section B2 in Supplementary Material
from Brusa and Matias, 2022a).

2.3 Modularity maximization methods

In this section, we focus on available implementations for hypergraph nodes clustering through
modularity-based methods. We briefly describe the corresponding algorithms and their major
characteristics, as well as the options that were chosen for our comparison study. All the
algorithms require an initialization, most of the times relying on an initial partition where
each node is in its own part, i.e., Cown = ({1}, . . . , {n}). We group the different methods by
the packages where they can be found. A summary is given in Table 1.

Note that we did not include in our experiments a comparison with methods based on
clique reductions. Indeed, Kumar et al. (2020) already did so and concluded that “hypergraph
based methods perform consistently better than their clique based equivalents” (end of page
16 in that reference).

HyperNetX package. The HyperNetX Python package (PNNL, 2023) contains a modularity
submodule (see https://pnnl.github.io/HyperNetX/modularity.html) including various
functions for hypergraph clustering through modularity maximization.
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Kumar et al. (2020) propose to maximize their modularity Qw-clique relying on the pop-
ular and fast Louvain algorithm for graphs (Blondel et al., 2008). More precisely, they do
not simply apply Louvain algorithm on the graph Gw-clique but rather propose an Iteratively
Reweighted Modularity Maximization (IRMM) algorithm where they iteratively apply Louvain
on a weighted clique reduction graph, and compute new hyperedge weights (see Algorithm 1
in Kumar et al., 2020). The hyperedge re-weighting step puts a larger weight on hyperedges
which are cut into more unbalanced partition vectors by the current partition C. For example,
a size-s hyperedge cut into the partition vector p = (s − 1, 1) (meaning a unique node falls
in a cluster different from the majority one) is much more unbalanced than another one cut
into the partition vector p = (s/2, s/2) (namely half of the nodes belong to a first cluster,
the other half belonging to a second cluster) and thus gets a larger weight (see Figure 1 in
Kumar et al., 2020). By getting a larger weight, it is more likely that the unique node in this
hyperedge will join the majority cluster at Louvain’s next step. The function hmod.kumar

implements the IRMM algorithm.

The last step refinement (LSR) is an algorithm described in Kamiński et al. (2021). This
is a general method that starting from an initial partition of the nodes, iteratively moves one
vertex at a time (in a random order) to a neighboring cluster whenever it improves Qwsc,
until convergence. The authors propose to start by running the IRMM on the weighted clique
reduction graph, then the resulting partition is used as initialisation in their LSR procedure,
that aims at maximizing Qwsc. For the specific choices strict, majority and linear of
the hyper-parameters ws,c described above, implementations are provided. The modularity
Qwsc is obtained through the function hmod.modularity from the HyperNetX package and
the LSR algorithm is implemented in the function hmod.last step from this same package.
Both functions contain the 3 different options for hyper-parameters ws,c defined in (4) and
the default choice is linear. This is this option that we choose for our comparisons.

strictModularity package. Kamiński et al. (2019a) propose a Clauset-Newman-Moore
like (CNM-like) algorithm to maximize Qstrict (see Clauset et al., 2004, for the original CNM
algorithm). Starting with partition Cown where each node is in its own part, this algorithm
iterates over the set of hyperedges that are split into more than 2 clusters by the current
partition, trying to merge all the parts it touches and looking for a modularity improve-
ment. More precisely, the algorithm comes in two versions. In the first one, a loop over
all hyperedges is taken, so that at each step all hyperedges are searched and evaluated for
merging. In the second one, a stochastic approach is taken which evaluates at each step just
one randomly chosen hyperedge (see Algorithm 1 in Kamiński et al., 2019a, for more details).
The stochastic version is computationally less expensive, especially for larger hypergraphs;
however it requires to set a maximal number of iterations. In what follows, we choose that
second version and set the number of iterations to twice the total number of hyperedges. The
implementation is available from Kamiński et al. (2019b), in a mix of Python and Julia files.
More precisely, a script strictModularity.py contains a “quick” Python implementation
that should work on small datasets only, while a Julia function find comms is more generally
provided to perform the CNM-like algorithm. We rely on the latter in our experiments.

HyperModularity package. Chodrow et al. (2021) propose the Hypergraph Maximum
Likelihood Louvain (HMLL) algorithm to maximize their symmetric modularity (defined in
Section A from the Appendix) and the simpler and faster AON-HMLL algorithm for maximizing
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the specific all-or-nothing Qaon modularity. Both the HMLL and the AON-HMLL are implemented
in the Julia package HyperModularity (Chodrow et al., 2022). However the current version
of the HyperModularity package does not contain an implementation of an estimation of a
general affinity function Ω̂ that is required to compute the symmetric modularity. That is
why we focus on the AON modularity Qaon and the corresponding AON-HMLL algorithm.

The AON-HMLL algorithm is an iterative algorithm that mimics the standard graph Louvain
algorithm in that it starts with initial configuration Cown (each node is in its own part)
and at the first iteration, it greedily moves nodes to adjacent clusters (i.e., clusters that
contain incident nodes) until no more improvement of Qaon is possible. The subsequent
iterations however differ from Louvain’s approach and instead of considering a weighted graph
on “supernodes”, it greedily moves entire clusters to adjacent ones whenever this improves
Qaon. Note that the option startclusters from Simple AON Louvain mod determines which
initial partition is used to estimate the parameters β̂s, γ̂s. We rely on startclusters ==

"cliquelouvain" that gives the best results in general.

Function (package or
script)

Modularity Algorithm Language Options choices

hmod.kumar

(HyperNetx, PNNL,
2023)

Qw-clique IRMM Python Init: Cown

hmod.last step

(HyperNetx, PNNL,
2023)

Qlinear LSR Python Init: Output(IRMM),
ws,c= linear

find comms (Kamiński
et al., 2019b)

Qstrict CNM-like Julia Init: Cown, Stochastic ver-
sion

Simple AON Louvain

(HyperModularity,
Chodrow et al., 2022)

Qaon AON-HMLL Julia Init: Cown,
startclusters ==

"cliquelouvain"

Table 1: Summary of functions (with package name and reference) for clustering hypergraphs
through modularity-based approaches. We indicate which modularity is maximized by the
function (second column), the corresponding algorithm (third column), the implementation
language (fourth column) and our option choices (fifth column).

2.4 Synthetic models for binary and modular hypergraphs

To compare the different modularity-based approaches for clustering hypergraphs nodes, it
is mandatory to rely on simulations of modular hypergraphs where ground truth clusters are
known. As mentioned earlier, there is no single standard method for generating modular
hypergraphs, and, to our knowledge, there are two main approaches. The first approach is
based on hypergraph stochastic block models, with several variants proposed in the literature.
The second approach involves a generalization of the LFR model for graphs (Lancichinetti
et al., 2008). We chose to consider two variants of the first approach and the only one that
we are aware of in the second approach. A summary of these models is given in Table 2. We
highlight the similarities and differences between those different generating models and the
characteristics of the hypergraphs generated by those approaches.
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In all those models, we fix a number of nodes n, either fix or randomly generate a true
number of clusters K (that might depend on n) as well as a true partition of the nodes
Ctrue = (Ctrue

1 , . . . , Ctrue
K ) and a maximal size S of hyperedges.

Hypergraphs with HSBM. We consider datasets simulated under a simple (binary and
non-multiset) Hypergraph Stochastic Blockmodel (HSBM, see Brusa and Matias, 2022a)
generated through the R package HyperSBM (Brusa and Matias, 2022b). In this model, we fix
the true number of clusters K, their proportions π = (π1, . . . , πK) such that πk ∈ (0, 1) and∑

k πk = 1 and the following parameters, for any 2 ≤ s ≤ S,

αs = P(e ∈ Es|∃1 ≤ k ≤ K, e ⊂ Ctrue
k ),

βs = P(e ∈ Es|∀1 ≤ k ≤ K, e ̸⊂ Ctrue
k ),

so that αs (resp. βs) is the probability for a s-tuple of nodes to form a hyperedge given that
they belong to the same cluster (resp. given that they are not all in same cluster). The
parameters should be chosen in order to ensure that the generated hypergraphs are modular.
To this aim, we consider the ratios ρs of the number of within-cluster size-s hyperedges over
the number of between-clusters size-s hyperedges obtained as:

ρs =
αs

∑K
k=1 π

s
k

βs(1 −
∑K

k=1 π
s
k)
.

In our simulations, we impose ρs > 1, with larger values corresponding to more modular
hypergraphs. Note that in this setting, the total number of size-s hyperedges is random and
has expected value

E(|Es|) =

(
n

s

)[
αs

K∑
k=1

πs
k + βs

(
1 −

K∑
k=1

πs
k

)]
.

We simulate hypergraphs with decreasing values E(|Es|) when s increases, which is more
realistic than the constant case.

Hypergraphs with DCHSBM-like. We consider datasets simulated under the DCHSBM-
like generating model proposed by Chodrow et al. (2021). This model relies on a fixed true
number of clusters K, balanced clusters |Ctrue

1 | = · · · = |Ctrue
K | = n/K and equal numbers

of size-s hyperedges for 2 ≤ s ≤ S; so that for each size s, a total of |E|/(S − 1) hyperedges
are drawn. With probability ps, such a hyperedge is placed on a s-tuple of (distinct) nodes
within the same cluster and with probability 1 − ps, it is placed on any s-tuple of (distinct)
nodes.

The ratio ρs of within-cluster over between-clusters size-s hyperedges is random and its
expectation is

E(ρs) =
ps + (1 − ps)cs
(1 − ps)(1 − cs)

, where cs =
K
(⌊n/K⌋

s

)(
n
s

) =
K(⌊n/K⌋)!(⌊n/K⌋ − s)!

n!(N − s)!
.

Note that the DCHSBM-like generating model has been originally proposed for multisets
hypergraphs, where nodes may be repeated in hyperedges, and hyperedges may be multiple.
In practice, as we consider sparse hypergraphs where the number of hyperedges is linear wrt
the number of nodes, multiple hyperedges are rare. Section C from the Appendix contains
some further considerations on the links between parameters in HSBM and DCHSBM-like.

11



h-ABCD benchmark dataset. Recently, Kamiński et al. (2023b) proposed a hypergraph
artificial benchmark for community detection, called h-ABCD, together with a code for gen-
erating these modular hypergraphs (Kamiński et al., 2023a). This generating model is an
appropriate candidate to compare modularity approaches. In this model, we fix the number
of nodes n and we either input a sequence of node degrees or it is sampled from a power-
law distribution with some input exponent γ ∈ (2, 3) and input minimum/maximum degree
values. The true clusters sizes are also either input or sampled from a power-law with some
input exponent β ∈ (1, 2) and minimum/maximum sizes values. In our case, we choose to
fix the cluster sizes so that the number of clusters is fixed rather than random. The model
requires a sequence q = (q1, . . . , qS) of weights summing to 1 such that S is the maximal
hyperedge size and qs is the fraction of size-s hyperedges. For instance fixing q1 = 0 prohibits
self-loops. The script abcdh.jl also handles the proportion of homogeneous hyperedges,
where homogeneity is the concept discussed in Section 2.2 when introducing Qwsc. We recall
that a homogeneous hyperedge has more than half of its nodes within the same (majority)
cluster. Let ωc,s denote the fraction of homogeneous hyperedges of size s that have exactly
c ≥ ⌊s/2⌋ nodes belonging to their majority cluster, so that

∑
c=⌊s/2⌋+1 ωc,s = 1. This nota-

tion is not to be confused with the weights ws,c introduced in (4). To link it to previously

introduced quantities, we remark that ωc,s =
∑

e∈Es
∑K

k=1 e
s,c
H (Ctrue

k )/|Es|. The current im-
plementation handles 3 different options: linear, strict, majority, corresponding to the
following choices

ωc,s =


(⌈s/2⌉)−1 if majority,
2c1{c≥s/2}

(s+⌊s/2⌋+1)⌈s/2⌉ if linear,

1{c = s} if strict.

Thus in the majority setting, a homogeneous hyperedge is randomly drawn among all hy-
peredges with more than half of their nodes in their majority cluster, while in the strict

setting, homogeneous hyperedges are exactly within-cluster hyperedges (i.e., all nodes belong
to the majority cluster). The linear setting spreads the homogeneous hyperedges in a linear
fashion across the different values c of the number of nodes in the majority cluster. In that
setting, there is thus a larger number of homogeneous hyperedges showing a larger number of
nodes in their majority cluster. Having set which hyperedges are homogeneous ones, a mixing
parameter ξ ∈ (0, 1) controls for the proportion of the degree of each node that is assigned
to non-homogeneous hyperedges. In this generating model, the total number of hyperedges
is random and equals

|E| =

∑
v∈V degH(v)∑

s sqs
.

In the strict setting, we can also express the ratio ρs of within-cluster over between-cluster
size-s hyperedges as

ρs =
1 − ξ

ξ
for the strict setting of h-ABCD.

3 Experiments

3.1 Scenarios

General principles and base case scenario. Our simulations explore various settings
in order to i) highlight the global behaviors of the methods and compare their performances;
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Synthetic
model

Parameters Characteristics

HSBM K; clusters proportions π; within- and
between-clusters probabilities αs, βs

random clusters sizes; ran-
dom |E2|, . . . , |ES |

DCHSBM-
like

K; |E|; probability ps that a hyperedge is
placed on a s-tuple of within-cluster nodes

balanced clusters; equal nb
of size-s hyperedges |E2| =
· · · = |ES | = |E|/(S − 1)

h-ABCD degrees (power-law distribution or fixed
values); cluster sizes (power-law distribution or

fixed values); proportions qs of size-s
hyperedges; setting of homogeneous hyperedges
(majority, linear or strict); proportion ξ of node

degree assigned to homogeneous hyperedges

random number and
cluster sizes; random
|E2|, . . . , |ES |

Table 2: Summary of synthetic models for modular hypergraphs and their characteristics. In
all the models, the number of nodes n and the maximal hyperedge size S are chosen by the
user. The numbers of clusters K and hyperedges |E| (resp. size-s hyperedges Es) can either
be fixed or random.

ii) explore which hypergraphs characteristics most impact those performances. In all the
settings, we choose to focus on sparse hypergraphs, for which the number of hyperedges
grows linearly with the number of nodes, as this is a most realistic setting.

We start with “base case” scenarios, called scenarios A, that we defined in the 3 different
generating models (HSBM, DCHSBM and h-ABCD). Then we explore other scenarios (called
B to F and Z), simulated under the most convenient model to do so, and in which we modify
only one characteristic at a time wrt the base case. Each scenario is composed of sub-
cases with different samples sizes, comprising in general cases 1 to 6 corresponding to n ∈
{50, 100, 150, 200, 500, 1000}. Moreover, in each scenario explored, we randomly generated
25 hypergraphs. Table 3 gives a summary of the scenarios considered and the empirical
characteristics of the 25 hypergraphs generated for each of them. In this table, each simulation
is summarized through its differing characteristic wrt the base case (namely, scenarios A).
For example, ScenB-DCHSBM is a simulation of hypergraphs less sparse than the base case.

Simulation Scenario n ¯|E2| ¯|E3| d̄ max(d)

ScenA-HSBM A1 50 198 85 13 32
(base case) A2 100 397 178 13 26
K = S = 3 A3 150 592 265 13 28

balanced clusters A4 200 795 354 13 28
ρs = 1.7; |E2|/|E| ≃ 0.7 A5 500 1990 885 13 28

ScenA-DCHSBM A1 50 194 89 13 26
(base case) A2 100 400 174 13 29
K = S = 3 A3 150 604 263 13 29

balanced clusters A4 200 804 345 13 32
E(ρs) = 1.7 A5 500 2015 860 13 30

Continued on next page

13



Table 3 – continued from previous page

Simulation Scenario n ¯|E2| ¯|E3| d̄ max(d)

|E2|/|E| ≃ 0.7 A6 1000 4030 1720 13 31

ScenA-hABCD A1 50 42 12 2.4 31
(base case) A2 100 80 24 2.3 32
K = S = 3 A3 150 117 37 2.3 32

balanced clusters A4 200 157 51 2.3 32
ρs = 1.7 A5 500 394 132 2.3 32

|E2|/|E| ≃ 0.75 A6 1000 782 266 2.3 32

ScenB-DCHSBM B1 50 554 245 37 74
(less sparse) B2 100 1117 483 37 61
K = S = 3 B3 150 1680 720 37 59

balanced clusters B4 200 2242 958 37 61
E(ρs) = 1.7 B5 500 5614 2386 37 63
|E2|/|E| ≃ 0.7 B6 1000 11198 4802 37 62

ScenC - HSBM C1 50 227 100 15 31
(unbalanced clusters) C2 100 460 208 15 37

K = S = 3 C3 150 690 313 15 40
π = (1/6, 1/3, 1/2) C4 200 929 423 15.5 35

ρs = 1.7 C5 500 2319 1063 15.5 39

ScenD-DCHSBM D1 50 84 199 15 32
(|E3| ≫ |E2|) D2 100 173 402 15 33
K = S = 3 D3 150 258 607 16 31

balanced clusters D4 200 344 805 16 31
E(ρs) = 1.7 D5 500 860 2015 16 32
|E2|/|E| ≃ 0.3 D6 1000 1722 4028 16 36

ScenE-DCHSBM E1 50 195 88 13 28
(larger ρ) E2 100 403 172 13 26
K = S = 3 E3 150 605 262 13 27

balanced clusters E4 200 805 344 13 27
E(ρs) = 2 E5 500 2008 867 13 29

|E2|/|E| ≃ 0.7 E6 1000 4040 1710 13 31

ScenF-DCHSBM F1 50 199 84 13 27
(smaller ρ) F2 100 408 167 13 26
K = S = 3 F3 150 605 262 13 30

balanced clusters F4 200 811 334 13 27
E(ρs) = 1.4 F5 500 2004 871 13 31
|E2|/|E| ≃ 0.7 F6 1000 4024 1726 13 30

ScenZ-hABCD Z1 100 49 18 1.5 10
(default h-ABCD) Z2 150 72 27 1.5 10
K random, S = 3 Z3 200 96 37 1.5 10

unbalanced clusters Z4 500 239 94 1.5 10
linear setting Z5 1000 478 187 1.5 10

Continued on next page
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Table 3 – continued from previous page

Simulation Scenario n ¯|E2| ¯|E3| d̄ max(d)

Table 3: Simulation settings and empirical descriptors of the
25 simulated hypergraphs in each scenario (line): number
of clusters (K), maximal hyperedge size (S), within-cluster
over between-clusters size-s hyperedges ratio (ρs), number of
nodes (n), mean number of size-s hyperedges ( ¯|Es|), mean
node degree (d̄) and maximum node degree (max(d)).

We started from a first series of scenarios, called scenarios A, that play the role of a
reasonable sparse case for the methods to work. To explore the robustness of our conclusions,
these scenarios are presented under the 3 different generating models (HSBM, DCHSBM and
h-ABCD) relying on similar settings for sample size n and number of hyperedges |E|. We set
the numbers of hyperedges such that they grow linearly with the number of nodes n (sparse
setting). We generated K = 3 clusters with equal size or probability (depending on the
generating model) and the maximum hyperedge size S = 3. This latter choice ensures both
reasonable computing times and simplicity of model parametrization. The ratio |E2|/|E| =
|E2|/(|E2| + |E3|) is set to 0.7 (on average) to reflect the fact that we expect larger sizes
hyperedges to be less frequent than smaller-sizes ones. The within-cluster over between-
cluster hyperedge ratio is constant wrt size s ∈ {2, 3} and set to ρs = 1.7 (either exactly or
on average), in order to obtain modular hypergraphs.

For this scenario A, we first generated hypergraphs under HSBM with a number of nodes
n up to 500, the algorithm becoming too slow for n = 1000. Under DCHSBM, we went
up to sample size n = 1000. Finally we generated samples under h-ABCD again up to a
number of nodes n = 1000. In this latter model, we considered the strict setting regarding
homogeneous hyperedges and choose the parameter ξ such that the resulting ρs = 1.7 and
we set |E2| = 3|E3|, which is approximately the case in the other 2 models. The degree
distribution is scale-free with γ = 2.07 and minimum and maximum value set to 1 and 32,
respectively (the observed values in the other 2 models). Note that the range of γ ∈ (2, 3)
did not allow us to select mean degrees with similar values than with the other 2 models.
In this sense, this scenario A under h-ABCD generating model diverges from the other ones
(under HSBM and DCHSBM).

Variant scenarios. We further contrasted scenarios A by varying one characteristic at
a time, keeping all others fixed. As our conclusions on scenarios A were globally robust
against the choice of the generating model (at least among HSBM and DCHSBM, see next
Section 4), we explored those variations in the most convenient model to do so. In scenario
B, we decrease the sparsity of the model by generating more hyperedges (keeping all other
parameters identical as in scenario A). In scenario C, we explore the effect of unbalanced
clusters, while in scenario D, we explore the effect of varying the proportions of size-2 and
size-3 hyperedges, namely considering more size-3 than size-2 hyperedges. Scenarios E (resp.
F) considers the case where the within-cluster over between-cluster hyperedge ratio ρs is
increased (resp. decreased) wrt scenario A. Finally, because we obtained pretty bad results
for all modularity clustering methods relying on hypergraphs generated by h-ABCD (see next
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Section 4), we explored in scenario Z the author’s default values of that model to generate
modular hypergraphs. Note that in this case, the true number of clusters K is random and
the ratio ρs cannot be obtained from the model parameters.

3.2 Quality assessment

We now describe the different properties explored to assess the quality of each method. These
properties are summarized in Table 4.

We first consider accuracy of the clustering, relying on the Adjusted Rand Index (ARI,
Hubert and Arabie, 1985) that measures similarity between Ĉ and Ctrue (up to label switch-
ing). It is upper bounded by 1, where a value of 1 indicates perfect agreement between the
clusterings, and negative values indicate less agreement than expected by chance. Then we
consider running times (expressed in seconds) of each method. The results have been obtained
on a computer with a AMD EPYC 7542 32-Core processor, 128 CPU (2 sockets of 32 double
threads cores; we used just one core for each job as none of the procedure is parallelized)
and 675Gb RAM. We already mentioned that modularity maximization is far from trivial
because of the size of the search space. Thus, an important question is whether the method
at stake indeed maximizes its objective. To assess this, we measure the relative error between
the ground truth modularity Qtrue = Q(H, Ctrue) and the resulting value Q̂ = Q(H, Ĉ) at the
estimated classification Ĉ, namely

error =
Q(H, Ctrue) −Q(H, Ĉ)

Q(H, Ctrue)
.

A method that reaches its objective (modularity maximization) without being able to recover
the true modular clusters would reveal that it is based on a definition of modularity that is not
appropriate. Also note that this error has a sign, with negative values indicating that ground
truth modularity is not the maximum value. The mean values and standard deviations for
ground truth modularity Qtrue are also reported (Table 5 in Appendix), since values close to
zero could induce unstable errors.

We finally also consider the estimated number of clusters K̂ wrt its true value K. In
general we present a barplot of the estimated values, to be compared to the true and fixed
one. Only for scenarios Z where the true value K is random, we plotted the difference K̂−K.

Question Measure

Is the classification correct? ARI(Ĉ ; Ctrue)
Is the method fast ? Running times

Is the modularity maximized? Relative error between Qtrue and Q̂

Is the number of clusters correct ? distribution of K̂ wrt K

Table 4: Quality assessment.

4 Results

General comparison. We first analyze the results under the simplest scenarios (namely
scenarios A, which represent our base case) and the HSBM generating model. Results are
presented in Figure 2. First, the CNM-like algorithm does not recover the ground truth
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clusters, with ARI values around 0 (Figure 2, top left). In fact, the algorithm did not
improve over its initialization at Cown = ({1}, . . . , {n}) and the number of estimated clusters
corresponds to the actual number of nodes (bottom right). Its relative error on modularity is
constant and corresponds to the relative difference between the modularity of Ctrue and that
of Cown. It is positive, so that the modularity maximization goal is clearly not achieved here.
The other 3 methods successfully recover the true clusters. For those 3 methods, median
ARI values are above 0.7 (top left) and the number of estimated clusters varies between 3
and 6 (bottom right). While the AON-HMLL globally obtains the best ARI results (top left), it
is also the fastest method (top right) and it attains its objective of modularity maximization
(relative error around 0, see bottom left). The LSR algorithm was proposed to improve
over the IRMM. While its relative error on modularity (bottom left) seems in general improved
over the latter (with smaller values), Table 5 in Appendix shows that the modularity Qw-clique

optimized by IRMM is close to 0 for the ground truth clusters, thus giving unstable errors; while
Qlinear optimized by LSR is strictly positive at those ground truth clusters. Most importantly,
from the clustering point of view, ARI is not improved (top left) and computing times are
much larger (top right). This seems to indicate that the LSR places too much emphasis on
maximizing modularity at the expense of clustering recovery. As the number of nodes n
increases, we observe that ARI values globally have a lower dispersion, but do not seem to
overall improve (top left). This might be due to our setting where the within-cluster over
between-cluster hyperedge ratio ρs is kept constant when n varies.

Let us now compare these results with those obtained on scenarios A generated under
DCHSBM and presented in Figure 3. From these simulations, we confirm the previous
conclusions: the AON-HMLL is globally the best method and the CNM-like algorithm has
very low performance for clustering recovery (ARI values very small). The other 2 methods
successfully recover the clusters but the LSR does not improve on the IRMM and has a much
larger computing time. Computing times are similar in this simulation and the former one; to
see this, we choose to remove computing times for the LSR method in scenario A6 (Figure 3,
top right). Indeed, those values are all above 15,000 seconds and including them would have
changed the y-scale in a way preventing from any possible comparison. As a consequence,
we conclude that our analysis is robust against the choice of HSBM or DCHSBM generating
model.

To finish with these settings from scenarios A, we consider Figure 4 where the results for
hypergraphs generated under the h-ABCD benchmark method are provided. Let us recall
that while we tried to mimic as much as possible the characteristics of the scenarios A obtained
under HSBM and DCHSBM, it was impossible to obtain similar node degrees within that
h-ABCD generating process (see Table 3) and the ones obtained here are much smaller. We
observe that in this setting, none of the proposed methods is able to reconstruct the true
clusters: ARI values are generally lower than 0.3 (see Figure 4, top left) and the number
of estimated clusters is too large (bottom right). Nonetheless, the modularity maximization
seems to work as the relative error between the ground truth modularity and its estimation
is small (bottom left). Note also that the LSR algorithm seems to find a clustering with larger
value of the Qlinear modularity than at the ground truth clusters (negative errors). Overall,
our conclusions raise the following question: are these datasets indeed modular? We will
come back to this later when discussing scenarios Z.

We now explore additional insights on the methods performances provided by other sce-
narios.

17



A1: n=50 A2: n=100 A3: n=150 A4: n=200 A5: n=500

0.00

0.25

0.50

0.75

1.00

A
dj

us
te

d 
R

an
d 

In
de

x

A1: n=50 A2: n=100 A3: n=150 A4: n=200 A5: n=500

0

500

1000

1500

2000

C
om

pu
tin

g 
tim

e 
(s

ec
.)

A1: n=50 A2: n=100 A3: n=150 A4: n=200 A5: n=500

−5.0

−2.5

0.0

2.5

M
od

ul
ar

ity
 r

el
at

iv
e 

er
ro

r

A1: n=50 A2: n=100 A3: n=150 A4: n=200 A5: n=500

3 4 5 50 3 4 5

10
0 3 4 5 6

15
0 3 4 5

20
0 3 4 5 6

50
0

N
A

0

20

40

C
ou

nt
s 

of
 K̂

method AON_HMLL CNM IRMM LSR

Figure 2: Datasets HSBM, scenarios A1 to A5. Comparison by increasing the number of
nodes from n ∈ {50, 100, 150, 200, 500}: Adjusted Rand Index (top left), time in seconds (top
right), relative error on modularity (bottom left) and estimated number of clusters (bottom
right, true value is 3). The IRMM and (consequently) the LSR methods both gave an error on
one dataset in scenario A5. Outlier points have been removed: from the relative error plot
(bottom left), 1 value below -500 concerning the IRMM method in scenario A1. Moreover, one
dataset from scenario A5 gave an error with the IRMM and (consequently) the LSR methods;
corresponding results were removed from the plots.
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Figure 3: Datasets DCHSBM, scenarios A1 to A6. Comparison by increasing the number
of nodes from n ∈ {50, 100, 150, 200, 500, 1000}: Adjusted Rand Index (top left), time in
seconds (top right), relative error on modularity (bottom left) and estimated number of
clusters (bottom right, true value is 3). From the time plot (top right), values for the LSR

method in scenario A6 range between 15,796 and 22,350 seconds and are not shown. Outlier
points have been removed from the relative error plot (bottom left): 1 value above 300
concerning the IRMM method in scenario A4.
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Figure 4: Datasets h-ABCD, scenarios A1 to A6. Comparison by increasing the number
of nodes from n ∈ {50, 100, 150, 200, 500, 1000}: Adjusted Rand Index (top left), time in
seconds (top right), relative error on modularity (bottom left) and estimated number of
clusters (bottom right, true value is 3). Outlier points have been removed: from the relative
error plot (bottom left), 3 values at 25, -50 and -55 concerning the IRMM method with in
scenarios A6, A2 and A3 respectively.
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Impact of sparsity. In scenario B, we decreased the sparsity wrt to scenario A (note that
the hypergraphs remain nonetheless sparse, see Table 3). Results are presented in Figure 5.
Here again, we removed from the time plot (top right) all values for the LSR method in scenario
B6. Their range between 16,961 seconds and 17,895 seconds would have changed the y-scale.
We mostly observe that while the above conclusions are still valid, the performances of the
3 “working” methods (AON-HMLL, IRMM and LSR) increase wrt to scenario A. Indeed, except
for the CNM-like algorithm, the methods exactly recover the true number of clusters (bottom
right) and ARI values are almost equal to 1 (top left). Relative errors on modularity are also
almost zero for those 3 methods, indicating that the local maximization of the modularity
works. We note that the CNM-like method has relative error equal to 1. This comes from
the fact that the maximized modularity is zero while the ground truth modularity is not
zero. Also note that the computing time for this method in scenario B6 becomes significantly
larger.
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Figure 5: Datasets DCHSBM, scenarios B1 to B6. Comparison by increasing the number
of nodes from n ∈ {50, 100, 150, 200, 500, 1000}: Adjusted Rand Index (top left), time in
seconds (top right), relative error on modularity (bottom left) and estimated number of
clusters (bottom right, true value is 3). From the time plot (top right), values for the LSR

method in scenario B6 range between 16,961 and 17,895 seconds are not shown.

Impact of unbalanced clusters. Let us now turn to scenario C where we explore the
impact of unbalanced clusters. Results are presented in Figure 6, where we removed from
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the time plot (top right) all values for the LSR method in scenario C5 as they range between
2,646 and 3,842 seconds. We observe that the overall performances of the methods have
decreased wrt scenario A: ARI values are quite low (top left) and the number of clusters
is over-estimated (bottom right). Contrarily to scenario A, increasing the number of nodes
n degrades the performance of ARI. This is quite counter intuitive, as we expect that with
larger values of n, the clusters sizes increase and thus should be easier to detect.
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Figure 6: Datasets HSBM, scenarios C1 to C5. Comparison by increasing the number of
nodes from n ∈ {50, 100, 150, 200, 500}: Adjusted Rand Index (top left), time in seconds (top
right), relative error on modularity (bottom left) and estimated number of clusters (bottom
right, true value is 3). From the time plot (top right), values for the LSR method in scenario
C5 range between 2,646 and 3,842 seconds and are not shown. Outlier points have been
removed: from the relative error plot (bottom left), 2 values concerning the IRMM method,
one above 30 in scenario C3 and the second below -60 in scenario C4.

Impact of proportions of size-s hyperedges. In scenario D, we explore the impact of
the proportions of size-s hyperedges. More precisely, while scenario A relied on a realistic
setting of a smaller number of size-3 than size-2 hyperedges (namely, |E2| ≫ |E3|), we explore
here the converse setting where |E3| ≫ |E2|. Results are presented in Figure 7, where again,
we removed from the time plot (top right), all values for the LSR method in scenario D6 for
comparison purposes, as their range is between 17,153 and 22,377 seconds. Here, we observe
as in scenario B that the performances of the 3 methods AON-HMLL, IRMM and LSR increase
wrt to scenario A. Indeed, the AON-HMLL and the IRMM have ARI values equal or close to 1
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(top left) and find (almost always) the correct number of clusters (bottom right), indicating
(almost) perfect clustering recovery. Relative errors on modularity are also almost zero for
those 3 methods, indicating that the local maximization of the modularity works. From that
simulation we conclude that clustering via modularity maximization is easier for datasets
with a larger proportion of large-size hyperedges and conversely, more difficult in the realistic
setting where larger sizes hyperedges are in smaller proportion.
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Figure 7: Datasets DCHSBM, scenarios D1 to D6. Comparison by increasing the number
of nodes from n ∈ {50, 100, 150, 200, 500, 1000}: Adjusted Rand Index (top left), time in
seconds (top right), relative error on modularity (bottom left) and estimated number of
clusters (bottom right, true value is 3). From the time plot (top right), values for the LSR

method in scenario D6 range between 17,153 and 22,377 seconds and are not shown. Outlier
points have been removed: from the time plot (top right), 1 value above 2,800 seconds
concerning the LSR method in scenario D5 and from the relative error plot (bottom left): 1
value larger than 14 and 1 smaller than -11 concerning the IRMM method in scenario D5.

Impact of within-cluster over between-cluster hyperedges ratio. Scenario E (resp.
F) rely on a larger (resp. smaller) value for the within-cluster over between-cluster hyperedge
ratio ρs (still constant with hyperedge size s) compared to scenario A. The results of this
simulation are presented in Figure 8 (resp. Figure 9). In those figures again, time values
for the LSR method in scenarios E6 and F6 respectively have been removed. We can observe
that the modularity based methods are sensitive to this parameter ρs, with better clustering
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results obtained when this ratio is large. As expected, the more modular the hypergraphs
are, the easier it is to recover the clusters.
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Figure 8: Datasets DCHSBM, scenarios E1 to E6. Comparison by increasing the number
of nodes from n ∈ {50, 100, 150, 200, 500, 1000}: Adjusted Rand Index (top left), time in
seconds (top right), relative error on modularity (bottom left) and estimated number of
clusters (bottom right, true value is 3). From the time plot (top right), values for LSR
method in scenario E6 range between 15,833 and 20604 seconds and are not shown. Outlier
points have been removed from the relative error plot (bottom left): 2 values concerning the
IRMM method, one larger than 100 in scenario E3 and the other smaller than -21 in scenario
E4.

Exploring possible bias from generating models. The bad results obtained by all
methods on the datasets generated from scenarios A under h-ABCD model raised the question
whether those hypergraphs are indeed modular. As we choose the settings of this simulation
to mimic the observations obtained under HSBM and DCHSBM but did not completely
succeed in that task, one could wonder whether our parameter choices make sense for this
model. That is why we consider scenarios Z under h-ABCD, relying on the authors of the
model default parameter choices. Note that we started at sample size n = 100 because n = 50
did not work. The results obtained on these datasets are presented in Figure 10. Here, we
observe that again, none of the methods is able to recover the ground truth clusters (top left
plot shows ARI values around 0 and bottom right plot shows difference between estimated
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Figure 9: Datasets DCHSBM, scenarios F1 to F6. Comparison by increasing the number
of nodes from n ∈ {50, 100, 150, 200, 500, 1000}: Adjusted Rand Index (top left), time in
seconds (top right), relative error on modularity (bottom left) and estimated number of
clusters (bottom right, true value is 3). From the time plot (top right), values for LSR
method in scenario F6 range between 22,891 and 39,967 seconds and are not shown. Outlier
points have been removed from the relative error plot (bottom left): 3 values concerning the
IRMM method, with 2 values smaller than -40 and -680 and 1 value larger than 22 in scenarios
F1, F4 and F6 respectively.
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and true number of clusters quite large). This seems to indicate that h-ABCD is not an
appropriate benchmark method to test community detection algorithms.
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Figure 10: Datasets h-ABCD, scenarios Z1 to Z5. Comparison by increasing the number of
nodes from n ∈ {100, 150, 200, 500, 1000}: Adjusted Rand Index (top left), time in seconds
(top right), relative error on modularity (bottom left) and difference between estimated num-
ber of clusters and true value (bottom right). Outlier points have been removed: from the
time plot (top right), 4 values above 900 seconds concerning the LSR method in scenario Z5
and from the relative error plot (bottom left), 1 value below -28 concerning the IRMM method
in scenario Z4.

Overall, we could wonder whether the generating models DCHSBM and HSBM could be
favoring the AON-HMLL method. This could be particularly the case for the DCHSBM model
as this model and the AON-HMLL method both derived from the same article (Chodrow et al.,
2021). However, we can argue against that claim that the modularities Qaon and Qstrict max-
imized by the methods AON-HMLL and CNM-like, respectively (see summary in Table 1) both
focus on contributions by within-clusters hyperedges only. More precisely, the difference in
Qaon and Qstrict lies only on adaptive weights included in the former, the latter appearing as
a special choice of those weights. We thus conclude that our simulations that partly focused
on the ratio of within-clusters over between-clusters hyperedges is not especially in favor of
the AON-HMLL method.

As a final note, we notice that in our experiments, the IRMM method sometimes shows
some very large values for the relative modularity error (points that we called “outliers” and
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removed to preserve y-scales in the plots). Looking at Table 5 in the Appendix we observe
that the ground truth modularity Qw-clique is close to zero, explaining this unstable behaviour
of the relative error.

5 Discussion

Let us now summarize the main findings of this study:

• Globally, the best modularity-based approach is the AON-HMLL, as it often recovers the
ground truth clusters and is among the fastest approaches;

• The IRMM algorithm has often good results at recovering ground truth clusters, but it
is less fast than the AON-HMLL;

• Though the LSR algorithm is specifically designed to improve on the IRMM, it does not
improve the clustering problem at stake;

• The CNM-like algorithm does not recover the ground truth clusters in any simulation
setting;

• We did not observe any algorithm for which the modularity Q would be correctly
maximized (relative error in modularity close to zero) while clusters would not be
recovered (low ARI values). Nonetheless, the modularity Qstrict from Kamiński et al.
(2019a) is not fully maximized by the CNM-like method, which leaves open the question
of whether it is able to capture communities in hypergraphs.

In the following, we concentrate on commenting the results of the “working methods”,
namely the AON-HMLL, IRMM and the LSR:

• The working methods tend to have better results when the densities of the hypergraphs
increase, though still in a sparse setting (i.e., when the number of hyperedges increases,
see scenarios B);

• The methods are sensitive to the balance in the cluster sizes, with better results when
clusters are balanced (see scenarios C);

• The methods tend to have better results when we observe a larger proportion of larger-
size hyperedges (i.e., when |E3| becomes larger than |E2|, see scenarios D);

• The methods are sensitive to the ratio ρs of within-cluster over between-cluster size-s
hyperedges, with better results when this ratio is larger (thus the hypergraph is more
modular, see scenarios E and F).

Another conclusion from our study is that the h-ABCD benchmark model (Kamiński et al.,
2023b) does not seem appropriate to generate modular hypergraphs, or at least that none
of the current modularity-based approaches is able to detect the simulated clusters in those
hypergraphs.

Our work is a first building block in gaining a better understanding of modularity in
hypergraphs, yet it comes with certain limitations that warrant attention in future research.
One constraint arises from computational limitations in both the generating models and

27



modularity maximization methods, restricting our exploration to relatively small graphs (with
a number of nodes n ≤ 1, 000). Consequently, we constrained ourselves to a limited number
of clusters (K ≤ 3), as larger values might lead to clusters too small for effective detection.
Our focus was on binary hypergraphs, which already encompass a vast array of higher-order
interactions. However, weighted hypergraphs are also of significant interest. Additionally,
our approach relied on simulated hypergraphs with characteristics dictated by methodological
constraints (e.g., the number of nodes, number of clusters) and others chosen to align with
what we believe to be realistic (e.g., sparse hypergraphs, |E2| ≫ |E3|, . . . ). Lee et al. (2021)
examined 13 real-world hypergraphs with heterogeneous sparsity (ratios |E|/n ranging from
as small as 0.5 to around 50) and an average hyperedge size s generally less than 3.9, with two
exceptions (hypergraphs related to drug chemicals). Despite this attempt, the literature still
lacks a large-scale study on the characteristics of real-world hypergraphs that could inform
and support simulations.

There remain numerous unresolved questions that extend beyond the scope of the present
contribution. Realistic characteristics, influenced by parameter choices in the generating
models, are intricately tied to the issue of detectability thresholds. Specifically, under what
circumstances is it possible to effectively recover clusters in a hypergraph? While this ques-
tion has garnered attention for uniform hypergraphs (Angelini et al., 2015; Chien et al.,
2019; Stephan and Zhu, 2022; Zhang and Tan, 2023), real-world hypergraphs, which are non-
uniform, remain largely unexplored in this context. Furthermore, moving beyond clustering
recovery, it would be valuable to investigate the discriminative power of modularities. Specif-
ically, understanding how discriminative each proposed modularity measure is could provide
insights on their design. Examining the distribution of modularity values across a diverse set
of hypergraphs, including non-modular ones, holds significant importance. In a similar vein,
whether hypergraph modularities are unimodal or not is an important question. Character-
izing the behavior of modularities across the entire spectrum of node clusterings would aid
in designing suitable modularity-based methods for community detection in hypergraphs.

6 Availability

All the material for reproducing the simulations can be found online at https://github.

com/veronicapoda/modularity/.
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A A symmetric hypergraph modularity

Chodrow et al. (2021) define a symmetric modularity, where for any partition C of the set of
nodes, the contribution of a hyperedge e ∈ E to the modularity of this partition is charac-
terized only by the vector p whose entries pk count the number of nodes in e belonging to
the k-th largest part in e ∩ C. More precisely, fix C = (C1, . . . , CK) a partition of V into K
parts and consider e ⊂ V a subset of nodes (here, e is not necessarily a hyperedge). Nodes
in e are partitioned by C into parts, namely e ∩ C = (e1, . . . , eJe) for some Je ≤ K (empty
parts are discarded). Sorting these parts from largest to smallest, we obtain e(1), . . . , e(Je)
with |e(1)| ≥ · · · ≥ |e(Je)| ≥ 1. In other words, e(k) is the k-th largest non-empty part in e∩C.
Then we let pk = |e(k)| be the sizes of these size-ordered parts. The vector p = (p1, . . . , pJe)
belongs to the set of partition vectors

P = {p = (p1, . . . pJ); p1 ≥ · · · ≥ pJ ≥ 1, for some J ≥ 1}.

More generally, for any partition (e1, . . . , eJ) of a subset of nodes e ⊂ V , we consider its
ordering (e(1), . . . , e(J)) in size-decreasing order, and let

ϕ(e1, . . . , eJ) = (|e(1)|, . . . , |e(J)|) ∈ P.

Note that ∥ϕ(e1, . . . , eJ)∥1 =
∑

k |e(k)| =
∑

k |ek| = |e| and we say that the partition vector
ϕ(e1, . . . , eJ) has size |e|. For any partition C of the nodes, any subset of nodes e ⊂ V and
any partition vector p ∈ P, we say that e is split by C into p whenever ϕ(e ∩ C) = p. In the
following, the modularity of a partition C will focus on how many hyperedges in H are split
into different partition vectors p ∈ P.

In order to fully understand the links between all the modularities, we introduce a set of
nodes subsets as follows. For any partition C = (C1, . . . , CK) of the set of nodes V and any
partition vector p ∈ P, with ∥p∥0 = J ≤ K and ∥p∥1 = s ≤ n, we let

Cp = {e = {v1, . . . , vs} ⊂ V ;ϕ(e ∩ C) = p},

the set of s-tuples of nodes that are split into the partition vector p by the partition C. With
a slight abuse of notation, we can extend the definitions eH(·) and VolH(·) to this set of nodes
subsets (while those functions were originally defined on a unique subset of nodes). Thus we
let

eH(Cp) =
∑
e∈E

w(e)1{e ∈ Cp} =
∑
e∈E

w(e)1{ϕ(e ∩ C) = p},

and

VolH(Cp) :=
∑

e={v1,...,vs}⊂V

1{ϕ(e ∩ C) = p} ×
s∏

i=1

VolH({vi} ∩ C)

=
∑

l1,...,lJ∈{1,...,K}
ljdistinct

J∏
j=1

VolH(Clj )
pj . (6)

Note that while the quantity eH(Cp) is obtained as a direct generalization of the function
eH defined on a unique subset of nodes, the quantity VolH(Cp) is a bit more involved. It is
a sum-product of volumes over all distinct clusters labels (l1, . . . , lJ) that induce the same
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partition p. These quantities are the generalizations of the former VolH(Ck)s that appeared
when considering only size-s hyperedges with all nodes belonging to a unique cluster Ck.

Let us consider an example to better understand VolH(Cp). We fix a partition C of the
nodes with K ≥ 3 parts. Then, the only partition vectors of size s = 2 are p = (2) and
p = (1, 1). Similarly, the only partition vectors of size s = 3 are p = (3); (2, 1); (1, 1, 1). Now
the volumes VolH(Cp) are:

VolH(C(2)) =

K∑
k=1

VolH(Ck)2; VolH(C(1,1)) =
∑

k ̸=l∈{1,...,K}

VolH(Ck)VolH(Cl);

VolH(C(3)) =

K∑
k=1

VolH(Ck)3; VolH(C(2,1)) =
∑

k ̸=l∈{1,...,K}

VolH(Ck)2VolH(Cl);

VolH(C(1,1,1)) =
∑

k,l,m∈{1,...,K}
k,l,m distinct

VolH(Ck)VolH(Cl)VolH(Cm).

Note that for any partition C, any size s and any integer c ∈ {⌊s/2⌋ + 1, . . . , s}, we have
the relation

K∑
k=1

es,cH (Ck) =
∑

p∈P;∥p∥1=s,p1=c

eH(Cp).

In other words, the quantity es,cH (Ck) counts the number of hyperedges of size s having the
majority of their nodes (c of them) in part Ck under partition C. When summing this over
all possible k, we get all possible splits of size-s hyperedges into partition vectors p such that
the majority part has exactly c elements (p1 = c).

Chodrow et al. (2021) also introduce a general affinity function Ω : P → R that modu-
lates the weight of the contribution of each partition vector p. They define the symmetric
modularity as:

Qsym(H, C) =
∑
p∈P

(∑
e∈E

w(e)1{ϕ(e ∩ C) = p} log(Ω(p)) − VolH(Cp)Ω(p)
)

=
∑
p∈P

(
eH(Cp) log(Ω(p)) − VolH(Cp)Ω(p)

)
.

A first term in this modularity counts how many (weighted) hyperedges are split by C into
the different partition vectors p ∈ P, while a second term is related to the generalized
volume VolH(Cp). The extra weights log(Ω(p)) and Ω(p) might not seem natural at first. In
fact, they appear as the result of an approximate maximum likelihood approach in a specific
degree-corrected hypergraph stochastic blockmodel (DCSHBM), in the same way as Newman
(2016) did in a graph context. As a result, these extra weights log(Ω(p)) and Ω(p) modulate
the influence of the 2 terms whose differences are summed. Also, (up to the scaling factors
log(Ω(p)) and Ω(p)), while the first term eH(Cp) in each sum still corresponds to an observed
number of specific hyperedges, the second term VolH(Cp) is not explicitly its expected value
under some probabilistic null model. Nonetheless it is a correction term naturally arising
from the consideration of a specific probabilistic model (the DCHSBM).
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In practice, the affinity function Ω is estimated from an initial partition Cinit through the
(weighted) number of hyperedges split into each partition vector by Cinit, normalized by the
volume of this partition vector under Cinit:

∀p ∈ P, Ω̂(p) =

∑
e∈E w(e)1{ϕ(e ∩ Cinit) = p}

VolH(C init
p )

=
eH(C init

p )

VolH(C init
p )

,

and the modularity becomes

Q̂sym(H, C) =
∑
p∈P

(
eH(Cp) log(Ω̂(p)) − VolH(Cp)Ω̂(p)

)
. (7)

The modularity Q̂sym represents a compromise between the 2 extremes Qw-clique and
Qstrict, that goes beyond the one proposed by Qwsc: all hyperedges play a role in this mod-
ularity, with weights depending on which partition vector p they are split in by partition C.
This is at the cost of estimating many extra affinity parameter Ω(p).

Currently, the code provided by Chodrow et al. (2022) does not contain an implementa-
tion of an estimation of a general affinity function Ω̂. Indeed, such a general affinity function
requires as many parameters as the total number of possible partitions of a size-s tuple of
nodes for any s ∈ {2, . . . , S} with S = maxe∈E |e|, which is huge. Note that their demos di-
rectory only contains in the file parameterized-affinities.ipynb an experimental version
of a very specific parametrized affinity function.

B All-or-nothing modularity revisited

With the previous notation at stake, we may give a different presentation of Qaon. The
all-or-nothing affinity function Ω is defined by

∀p ∈ P such that ∥p∥1 = s, Ωaon(p) =

{
ωs1 if ∥p∥0 = 1,

ωs0 else.
(8)

Here, the ℓ1 norm of an integer vector p = (p1, . . . , pJ) is the sum of its entries ∥p∥1 =
∑

j pj
and its ℓ0 norm is the number of its entries ∥p∥0 = J . In other words, a partition vector p
has AON affinity

Ωaon(p) =
∑
s≥2

(
ωs11{p = (s)} + ωs01{∥p∥0 ≥ 2; ∥p∥1 = s}

)
.

For each size s of a partition vector, this affinity function is parametrized by only two different
values ωs1, ωs0. These parameters will modulate differently the contributions of hyperedges
e depending on their size s = |e| and on whether all their nodes belong to the same cluster
(i.e., ∥ϕ(e ∩ C)∥0 = 1) or belong to at least 2 different clusters (i.e., ∥ϕ(e ∩ C)∥0 ≥ 2). In
particular, the volumes (6) computed for partition vectors p such that ∥p∥0 = 1 write

VolH(C(s)) =
K∑
k=1

VolH(Ck)s.
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The AON affinity function will in practice be estimated from an initial partition Cinit through

∀s ≥ 2, ω̂s1 =
eH(C init

(s) )∑K
k=1 VolH(C init

k )s
; ω̂s0 =

∑
e∈Es w(e)1{∥ϕ(e ∩ Cinit)∥0 ≥ 2}∑
p∈P;∥p∥0≥2,∥p∥1=s VolH(C init

p )
.

Finally, inserting that affinity function inside Qsym and after some algebra, the resulting mod-
ularity becomes (up to additional constants that do not depend on C and are thus neglected)

Qaon(H, C) = −
∑
s≥2

β̂s

(
cuts(C) + γ̂s

K∑
k=1

(VolH(Ck))s
)

+ c (9)

=
∑
s≥2

β̂s

(
eH(C(d)) − γ̂s

K∑
k=1

(VolH(Ck))s
)

+ c

=

K∑
k=1

∑
s≥2

β̂s

( ∑
C′

k⊂Ck;|C′
k|=s

eH(C ′
k) − γ̂s(VolH(Ck))s

)
+ c,

where β̂s = log ω̂s1 − log ω̂s0 and γ̂s = β̂−1
s (ω̂s1 − ω̂s0), the cut terms cuts(C) count the

(weighted) number of hyperedges of size s that contain nodes in two or more distinct clusters;
namely, cuts(C) = |Es| − eH(C(s)). The first line in Equation (9) is the expression of Qaon

given in Chodrow et al. (2021) while the following lines correspond to our rewriting, showing
the similarities with the other previously defined modularities. While in general we may
expect that ω̂s1 > ω̂s0 so that both β̂s, γ̂s > 0, we then recover in this expression a sum of
difference terms between a count of specific hyperedges (those entirely included in a cluster)
and a correcting volume term.

C Linking parameters in HSBM and DCHSBM-like

If we consider a DCHSBM-like model generating multiset hypergraphs with equal cluster
proportions, then we get using twice Baye’s rule,

ps =
P(e = {v1, . . . , vs} ∈ Es; ∃1 ≤ k ≤ K,ϕ(e ∩ Ctrue) ⊂ Ctrue

k )

|Es|/ns

=
αsK(K/n)s

|Es|/ns
=

αsK
s+1

|Es|
.

On the other way round, if we consider a HSBM generating simple hypergraphs with cluster
proportions πk, then we get using twice Baye’s rule,

αs =
ps[αs

∑
k π

s
k + βs(1 −

∑
k π

s
k)]∑

k π
s
k

,

and in the particular case of equal cluster proportions, namely πk = 1/K, then this leads to

αs =
psβs(K

s−1 − 1)

1 − ps
.
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D Values for ground truth modularity

Table 5 shows mean and standard deviations values of the modularities at the ground truth
clustering for each method (each one focusing on a specific modularity definition, as sum-
marized in Table 1) and each scenario. We observe that the IRMM algorithm that maximizes
Qw-clique has a ground truth modularity close to 0.

scenario / method AON-HMLL CNM IRMM LSR

ScenA-HSBM
A1: n = 50 -1440.28(253.46) 0.31(0.04) -0.01(0.02) 0.23(0.04)
A2: n = 100 -3281.04(321.45) 0.34(0.02) -0.01(0.02) 0.27(0.02)
A3: n = 150 -5089.41(349.39) 0.35(0.02) 0(0.01) 0.27(0.02)
A4: n = 200 -7007.19(431.96) 0.36(0.02) 0(0.01) 0.28(0.02)
A5: n = 500 -19151.93(657.66) 0.36(0.01) 0(0.01) 0.28(0.01)

ScenA-DCHSBM
A1: n = 50 -1507.05(140.8) 0.38(0.03) -0.02(0.02) 0.3(0.03)
A2: n = 100 -3214.43(259.46) 0.37(0.02) 0(0.02) 0.29(0.02)
A3: n = 150 -5055.25(307.23) 0.37(0.02) -0.01(0.01) 0.29(0.02)
A4: n = 200 -6819.27(297.63) 0.37(0.02) 0(0.01) 0.29(0.02)
A5: n = 500 -18619.63(568.68) 0.36(0.01) 0(0.01) 0.29(0.01)
A6: n = 1000 -39925.19(782.67) 0.36(0.01) 0(0.01) 0.29(0.01)

ScenA-hABCD
A1: n = 50 -177.69(39.81) 0.27(0.1) -0.02(0.07) 0.24(0.09)
A2: n = 100 -439.39(58.81) 0.34(0.07) -0.01(0.04) 0.3(0.06)
A3: n = 150 -727.05(63.2) 0.36(0.04) -0.01(0.03) 0.31(0.03)
A4: n = 200 -1040.2(69.62) 0.38(0.04) -0.01(0.03) 0.33(0.04)
A5: n = 500 -3453.7(312.77) 0.42(0.01) 0(0.02) 0.36(0.01)
A6: n = 1000 -8578.86(633.97) 0.44(0.01) 0(0.01) 0.37(0.01)

ScenB-DCHSBM
B1: n = 50 -4476.24(286.51) 0.38(0.02) -0.01(0.01) 0.3(0.02)
B2: n = 100 -9895.18(438.98) 0.37(0.01) -0.01(0.01) 0.29(0.01)
B3: n = 150 -15436.71(407.27) 0.37(0.01) 0(0.01) 0.29(0.01)
B4: n = 200 -21146.49(497.66) 0.36(0.01) 0(0.01) 0.29(0.01)
B5: n = 500 -57396.92(1005.76) 0.37(0) 0(0) 0.29(0)
B6: n = 1000 -122253.16(1071.73) 0.36(0) 0(0) 0.29(0)

ScenC-HSBM
C1: n = 50 -1692.96(341.87) 0.22(0.04) -0.01(0.02) 0.16(0.04)
C2: n = 100 -3818.35(526.14) 0.23(0.03) -0.01(0.01) 0.16(0.03)
C3: n = 150 -6006.44(720.38) 0.24(0.03) 0(0.01) 0.17(0.03)
C4: n = 200 -8411.32(678.46) 0.24(0.02) 0(0.01) 0.17(0.02)
C5: n = 500 -23301.14(1133.75) 0.24(0.02) 0(0.01) 0.17(0.02)

ScenD-DCHSBM
D1: n = 50 -3268.27(172.98) 0.47(0.03) -0.01(0.02) 0.28(0.02)
D2: n = 100 -7377.67(213.42) 0.45(0.02) 0(0.01) 0.27(0.01)
D3: n = 150 -11692.36(325.51) 0.45(0.02) -0.01(0.01) 0.27(0.01)

Continued on next page
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Table 5 – continued from previous page

scenario / method AON-HMLL CNM IRMM LSR

D4: n = 200 -15946(274.87) 0.45(0.01) 0(0.01) 0.27(0.01)
D5: n = 500 -43675.15(431.82) 0.45(0.01) 0(0.01) 0.27(0.01)
D6: n = 1000 -92887.89(1079.8) 0.45(0.01) 0(0) 0.27(0.01)

ScenE-DCHSBM
E1: n = 50 -1496.2(102.41) 0.41(0.03) -0.01(0.02) 0.33(0.02)
E2: n = 100 -3210.91(190.09) 0.41(0.02) 0(0.01) 0.33(0.02)
E3: n = 150 -5117.84(249) 0.41(0.02) -0.01(0.01) 0.32(0.02)
E4: n = 200 -6902.04(311.24) 0.4(0.02) -0.01(0.01) 0.32(0.01)
E5: n = 500 -19069.69(632.72) 0.4(0.01) 0(0.01) 0.32(0.01)
E6: n = 1000 -40020.25(699.77) 0.4(0) 0(0) 0.32(0)

ScenF-DCHSBM
F1: n = 50 -1401.74(122.37) 0.33(0.03) -0.02(0.02) 0.26(0.02)
F2: n = 100 -3045.16(240.8) 0.32(0.02) 0(0.02) 0.25(0.02)
F3: n = 150 -4990.03(275.21) 0.32(0.02) 0(0.01) 0.25(0.01)
F4: n = 200 -6623.92(208.33) 0.33(0.02) 0(0.01) 0.26(0.02)
F5: n = 500 -18654.39(359.67) 0.32(0.01) 0(0.01) 0.25(0.01)
F6: n = 1000 -39341.82(941.03) 0.32(0.01) 0(0) 0.25(0.01)

ScenZ-hABCD
Z1: n = 100 -529.92(164.11) 0.28(0.07) -0.02(0.04) 0.26(0.08)
Z2: n = 150 -782.78(209.52) 0.33(0.05) -0.02(0.04) 0.31(0.05)
Z3: n = 200 -961.22(128.09) 0.35(0.04) -0.01(0.02) 0.34(0.03)
Z4: n = 500 -2457.49(132.12) 0.39(0.02) 0(0.01) 0.41(0.02)
Z5: n = 1000 -5027.19(177.84) 0.41(0.01) 0(0.01) 0.43(0.01)

Table 5: Mean value (and standard deviation) of ground
truth modularities Qtrue = Q(H, Ctrue) for the 25 hyper-
graphs generated under each method and scenario.
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