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1. Introduction to the Answer letter

AR: We thank the recommender and both reviewers for their time, attentive reading and useful recommendations
for improvements. In this letter, we answer point by point to all comments made, and point the way we
improved the article to take them into account. We also join a document highlighting all the differences made
between the original submission and the new revision.

2. Recommender comments

RC: I think this preprint shows potential and would like to recommend a revised version of it. The current
version falls a bit short. The reviewers make some very nice suggestions to this end. In particular, I’d like
to emphasize the point about connecting better with previous literature. It seems there are a number of
models that could be considered as part of the current version (e.g., see Peter Hoff’s work on latent space
models), so not pointing this out seems like a missed opportunity.

AR: We understand the comments made by the recommender, and modified the article in that direction, as detailed
in answers to reviewers. In particular, we added a whole new section concerned with related work. We want
to stress, nevertheless, that the literature on related topics is enormous, which is precisely a consequence of
the genericity of our approach, and we think that writing an exhaustive overview of statistical network models
is beyond the scope of this article (and has not been attempted yet...).

RC: Providing a summary of features/benefits over other packages that involve network generation would also
help promote the proposed software.

AR: We added a section listing other packages we could found for random network generation. We are willing to
add any other relevant package pointed to us.

3. Reviewer 1

RC: For the most part, the method and experiments are clearly presented and easy to follow.

AR: We thank the reviewer for this comment

RC: However, I do think the authors could beef up their literature review and motivational examples in order to
better place their method in context with previous work.
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AR: We added a whole section on related works, to better point the similarities and differencies with existing
methods and softwares. Keeping this discussion short was a choice to make the article easy to read, since it
is not intended in particular for the statistical network model audience, but more generally for the network
science community, rather as a tool, or a practical solution to a common problem, rather than a theoretical
contribution. We agree nevertheless than adding context can always be useful, so we made our best to add
something easy to read yet placing the method in the literature. We also added a motivational example on
benchmark for network tasks, and clarified in various places that the paper was not intended as a theoretical
contribution in statistical network models.

RC: I also think it would be nice if the authors could clarify how their method can be used in conjunction with
real data given its limitations for statistical inference.

AR: We added a subsection untilted Working With Node Attributes, giving concrete examples of application on
real data, but without diving into the details. Again, it was a choice to keep the article concise, to restrain the
article to one contribution. Extending on one possible application such as network properties comparison,
graph distances or diffusion properties require to add a lot of details on choices made, experimental design,
etc., and previous reviewers found that the paper had too many ideas in a single paper with these elements.
We plan to develop these ideas in later publications, using Structufy-Net as a brick to develop more theoretical
questions. But of course, clarifying how a user can use the library is the purpose of this paper, so we are
willing to add more details if something stays unclear.

RC: The proposed method has many similarities to a graphon model, and I think the paper could be improved
with some discussion of the graphon literature to demonstrate why the proposed method should be preferred.
Perhaps one advantage of the proposed method is that it has a more easily controlled noise level?

AR: We now mention the similarities with graphons in the related work section. It is true that there is a similarity,
the presence of a bivariate function, although the graphon match directly to a probability, and not to a rank.
However, as we understand it, we do not claim that our random graph model should be preferred over
graphons. It would be like claiming, for instance, that the LFR benchmark should be preferred over SBM. We
understand our proposition as an answer to a practical problem, how to generate graphs with a controlled
expected size and diverse structures. We do not claim that the statistical model behind it is not particularly
clever or close to real structures, it is just convenient for the objective task. Indeed, controlling the noise level
is useful when generating random graphs, and this idea is not present in graphons, because graphons have
been proposed with very different objectives in mind. We tried to dicuss this in the new related work section.

RC: On a similar note, the graphs being generated are specific instances of inhomogeneous random graphs,
so it could be worth discussing that literature further to identify any similar previous work and how the
proposed method improves upon it.

AR: We are not certain to understand this remark. We tried to introduce various models of inhomogeneous random
graphs, additionnaly to the parallels already made in the zoo with SBM, latent space models, etc, in the new
related work section. Again, this literature is enormous and we are not sure what exactly would be useful to
point to the reader.

RC: I think I generally understand the authors’ use of the rational Bezier curve as a means of interpolating
between the two extremes of complete equality and inequality in the distribution of the probabilities over
the edge pairs while fixing m. But how did they decide on this family of curves for interpolation? Is it the
most "natural" in some sense? Or does its derivative have a particularly nice form? I’m curious to know
because I hadn’t heard of these functions before reading the paper.

AR: We chose the Bézier as an interpolation because it seemed to us a simple, practical answer to the problem. We
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tried to clarified that point in the new version when introducing it. In practice, we know the two extremities,
when the network is fully deterministic, and when the network is fully random. When plotting these two
extremes as in figure 2a), the Bézier solution seems like a simple, practical and logical solution. However,
we are fully open to other propositions, it could make perfectly sense to have an alternative interpolation
function, and it would be little work to add it to the software. We just do not have any particular idea of what
other function we could use to interpolate smoothly between these two extremums.

RC: In the motivation section, the authors highlight diffusion as a particular process for which understanding
the role of network structure is important, but there are many other example applications they could
mention (e.g. synchronization, percolation). By singling out diffusion it appears like the proposed method
has a more limited set of applications than it does, and I think the motivation would be strengthened by
adding some additional examples.

AR: We added another example application (Benchmark for network taks), and mention in the diffusion section
the other examples provided by the reviewer (synchronization, percolation). Our problem, in some sense, is
that we see so many potential usages, that it is difficult to know what to say. Indeed, the answer is the same as
simply asking "what is a null/reference model useful for" ? The answer, basically, is "network science" :)

RC: The authors do a good job of pointing out the limitations of their method at the end of the paper, in
particular the scalability and the independence assumption they make. I would also add here the challenges
resulting from the poor compatibility of this method with parameter estimation techniques, necessitating
the comparison of ad hoc summary statistics as discussed in the last paragraph.

AR: We added this parameter estimation difficulty in the discussion of the limit, and we totally agree with it. We
are not sure however to understand the comment on the summary statistics: in principle, it seems to us that
the random graph generators produced by this framework are equivalent in nature to existing ones such as
block models: after picking a rank function and an epsilon, we have a fix probability for each node pair, so we
can compute a probability to generate a given graph, and thus in theory, perform a likelihood maximization.
Of course, if epsilon and the rank function are considered free parameters, we would end up with a trivial
solution (much as with SBM), and it would thus be required to add new constraints, such as a fix epsilon, and
constraints on the families of rank functions acceptable. But we totally agree that there is no reason to think
that doing this would be computationally tractable, or even a good idea.

RC: I think it would be interesting to see how the detectability of community structure varies with epsilon for
block-structured rank matrices. Does this have a clean phase transition like in the standard detectability
setting? Not a suggestion for publication, just a thought for future studies.

AR: Thank you, that is a question more to look at :)

RC: A very minor point that I found confusing was that the authors said epsilon "controls how strongly the
random graph is driven by the community structure." I think they should change the wording to something
like "planted structure" or "rank structure", since their method can represent much more than community
structure.

AR: We thank the reviewer for pointing this, it was indeed a writing mistake

RC: Another very minor point for presentation is that I found the in-text citation format a bit confusing. There
should be brackets or parentheses or something around the in-text citations to separate them from the
other text.

AR: We are not sure to understand this comment, in principle we have parenthese around the in-text citation,
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unless we missed some of them (we found 2 occurences at least). This format is imposed by the journal, and
we are not used to it either.

RC: I enjoyed reading this paper, and I hope the authors find my suggestions helpful.

AR: Thank you for the comment and indeed we agree that these comments helped improve the paper.

4. Reviewer 2

RC: The theoretical contribution of the paper is not clear enough. The paper does not explain the intuition
behind the general generative process that it proposes (the two steps on page 3), and most importantly what
the rank function may represent or may be interpreted.

AR: We are not sure to see how to explain the intuition better. The rank function should not be interpreted beyond
a ranking of node pairs. Maybe the confusion arised from the fact that many statistical models such as the
SBM are used for inferential tasks, while this is not the objetive of the proposed framework. Instead, this
article focus on the generation of random graphs with planted structures, a pracical problem in network
science. We tried to make this point clearer in several locations in the article, as detailed in answers to other
comments and to the other reviewer.

RC: Right now, it is not clear why one would use this framework instead of directly using specific and already-
known models.

AR: We added a related work section, in which we tried to clarify the relation with some of existing specific,
already-known models. The objective of our framework is clearly not to generate blocks or spatial structure,
for which perfectly fine models already exist, but rather to allow the generation of other, more exotic structure,
as we tried to demonstrate in the structure Zoo.

RC: Linked to this, it is not clear what the Structify-net package adds to the existing software tools we already
have. In particular, the graph generator functions in NetworkX seem to already do a fine job in helping
users to generate the graphs they are interested in. The authors should show what their tool compares to
already existing solutions and why it is a useful addition.

AR: We added a section listing related frameworks for network generation, including networkx. Indeed, networkx,
igraph or graph-tool are valuable softwares to generate random graphs having a block structure, and some
simple spatial structures. However, the point of our proposed framework is to allow users to generate random
graphs with different structures, the ones they might be interested in, not limited to blocks or spatial ones.
We tried to clarify this in the related work section, in the introduction to the zoo, and in the introduction.

RC: The application on replicating the Watts-Strogatz experiment does not seem to be the best way to demon-
strate the value of the framework, because it is very specific. A better way could be to compare the
results of the graph generator to several classic graph generators (either theoretically, looking at graph
characteristics that are produced, such as clustering, diameter, etc., or comparing software capabilities,
such as computing time).

AR: We agree that the Watts-Strogatz experiment is quite simple and limited. But we used it specifically as a toy
model, to illustrate the possibility on simple cases without entering in many unrelated nitpicky details. As the
zackary karate club, it is not really useful in itself, but illustrates the usage. Comparing with classic graph
generators would be something difficult without making a lot of assumptions, because the principle of our
proposition is to have a very large power of expression. Its main interest is that the users can generate the type
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of structures they want. The softaware is not designed to generate graphs of a particular structure that could be
compared with one flavor of SBM or latent spaces, but to allow users to create their own structures. In some
sense, it is a meta-generator, a generator of network random graph generators. We nevertheless agree that we
could do much more by comparing network properties on various networks. In fact, if the reviewer check
the documentation of the library (https://structify-net.readthedocs.io/en/latest/Tutorial/Tutorial.html), they
can see that we already performed these type of experiments. The problem was that when we wrote a first
paper including both a presentation of the method and examples of applications on real networks comparing
with other models such as fitter SBM, the preivous proof readers said that the papers was becoming utterly
complex, and that the contribution was becoming unclear. It therefore seems necessary to us to first introduce
the framework and its associated software in a paper, and then in a later work, to actually use this tool as a
brick to do something useful.

RC: Page 2, there are many fields where the Erdös-Rényi model is definitely not the most commonly used.
Maybe the most known, or elementary?

AR: We agree with the reviewer that the claim is not very meaningful, and rephrased our sentence to say that ER
is the simplest random graph in the sense that it preserves no other property than the number of edges.

RC: Page 4, "P(r) = p, p in [0,1]" reads as: the probability function is a constant p.

AR: Thank you, we corrected this error.

RC: Page 4, what is the rationale behind using Bézier curves (accent missing)? What do the endpoints and
control point represent?

AR: We corrected the accent error, thank you. About the rationale of using Bézier, we added a paragraph to explain
it. This choice seemed a practical solution to a problem which is simple to understand when looking at figure
2,a): independently of the choice of the interpolation function, we know what the two extreme functions are
those for ϵ = 0 and ϵ = 1. The Bézier function is just a practical way to interpolate between the two without
introducing additional parameters, and visually coherent with intuition. We are however open to any other
idea for a smooth interpolation between those two natural extremes.

RC: The sub-sections on block structures page 6 are straightforward and could be shortened.

AR: We would prefer to keep them. The article is not written for an audience expert in statistical models, but rather
a generic network science approach, and large fractions of this audience is not familiar with SBM approaches.

RC: In comparison, the sections on star structure and core-preiphery page 7 could be better developed. Are the
formulations for the rank functions proposed the only ones possible? How were they derived?

AR: The formulations are only examples, and we clarified that further in the introduction of the Zoo chapter, in
the description on these models, and introduction. We tried to better explain throughout the article that the
model we proposed is intended for the users to create their own structures, and that the Zoo is only here to
provide a few examples of what can be done. We also developed the description of those 2 in particular.

RC: Why are fractal models useful? (see first minor comment)

AR: They are only useful to exemplify the flexibility of the model (we now clarify this in the introduction of the
zoo section). We do think that some of these models have interesting properties, in particular, having both a
hierarchical organization and a bloc structure intertweened (and not simply as a bloc hierarchy) is something
that sounds worth investigating. But studying the properties of these networks is not the focus of this article.

RC: Page 8, "hierarchical structure" in networks has been defined in many ways and by many other papers,
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and hierarchy in networks is a vibrant topic in social network analysis...

AR: We totally agree and are aware of that. Here we talk about one definition of one particular notion, widely
known in network science (it has its own wikipedia page, "Hierarchical Network Model"). We think that the
problem was that we were not clear enough about that, and we rewrote the section to make it clearer.

RC: Check typos: page 2,"heterogeneityBarthélémy", page 4, "Section describes"...

AR: Thank you, we corrected these ones and tried our best to correct most of them.
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Structify-Net: Random Graph generation
with controlled size and customized
structure
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Abstract

Network structure is often considered one of the most important features of a network, and various models
exist to generate graphs having one of the most studied types of structures, such as blocks/communities
or spatial structures. In this article, we introduce a framework for the generation of random graphs with a
controlled size —number of nodes, edges— and a customizable structure, beyond blocks and spatial ones,
based on node-pair rank and a tunable probability function allowing to control the amount of randomness.
We introduce a structure zoo—a collection of original network structures— and conduct experiments on the
small-world properties of networks generated by those structures. Finally, we introduce an implementation
as a Python library named Structify-net.
Keywords: Network Generation, Random Graphs, Network Structure, Python Library
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Introduction

1
:::::::::::::::::
Introduction

The structure of networks has long been one of themost studied research questions in network science. In
this article, we introduce a method to generate networks of a chosen size, organized according to a structure
that can be expressed as an arbitrary ranking function for node pairs. This process thus allows the generation
of classic structures such as communities, blocks, and spatial organizations, but also more exotic ones. We
subsequently show an application of this framework to study network properties, by extending the classic
small-world experiment by (Watts and Strogatz, 1998). A python library (Cazabet, 2023) allowing reproduction
of the results and generating networks with custom structures is also introduced.

Context

Generating networks of a chosen size and respecting some constraints is a key topic in network science.
It is used in various tasks, for instance, to study network properties (Wang and Chen, 2003), as null models
(e.g., Durak et al., 2013), to study the impact on diffusion processes (e.g., Ódor et al., 2021), as benchmarks
(e.g., Lancichinetti et al., 2008), etc. In this article, we focus more particularly on a class of statistical network
:::::::
random

:::::
graphmodels, in which the probability of observing edges between each pair of nodes is independent

of the probability to observe
::
of

:::::::::
observing edges between other pairs. This class of models is commonly used

to generate various structures, from the homogeneous Erdős–Rényi (ER) generator, to configuration models
preserving node degrees, block structures (Abbe, 2017), spatial structures (Cazabet et al., 2017; Waxman,
1988), etc.

:::
See

:::::::
section

:
7
:::
for

::
an

::::::::
overview

:::
of

::::::
related

::::::
works.

:The originality of ourwork is to propose a generic framework to generatemany different network structures
while allowing to set:

• The number of nodes n;
• The number of edgesm (equivalently, the density);
• A parameter ϵ ∈ [0, 1] controlling the strength of the structure bias, i.e., the network is fully determined
by the structure definition when ϵ = 0, and increase in randomness with ϵ, becoming an ER network for
ϵ = 1.

Motivational examples

:::
The

:::::
main

:::::::::
advantage

:::
of

:::
our

::::::::::
proposition

::::::::::
compared

::::
with

:::::::
existing

::::::::::
frameworks

:::::
such

::
as

::::
SBM

:::
or

:::::
latent

::::::
space

::::::
models

::
is
::
1)

::::
the

::::::::
simplicity

:::
for

::::
the

::::
user

::
to

:::::::
design

::::
their

::::
own

:::::::::
structure

:::::
logic,

::
by

:::::::::
providing

::::
their

:::::
own

:::::::
ranking

:::::::
function

::::
(see

:::::::
Section

::
2),

::
2)
:::
to

::::::
control

::::
the

:::::::
strenght

::
of

:::
the

:::::::::
structure

::::
bias

:::::
using

:
a
::::::
single

:::::::::
numerical

::::::::::
parameter.

:::::::::::
Structify-Net

::
is

:::
not

::::::::
intended

:::
to

::
be

:::::
used

:::
in

:::::::::
parameter

:::::::::
inference

:::::
tasks,

::::
but

::::
only

:::
for

::::
the

:::::::::
generation

:::
of

::::
null

:::::::
models,

::::::::
reference

:::::::
models,

::::
and

:::::::
random

::::::
graphs

::::
with

:::::::::
controlled

::::::::::
properties

::
in

:::::::
general.

1.1
::::::::::::::
Motivational

:::::::::::
examples

::::::::::
Generating

:::::::
multiple

::::::::
random

::::::::
networks

:::::
with

::::::::
common

::::::::::
properties,

:::::
either

:::::
fixed

:::::::::::
beforehand

::
or

::::::::::
preserved

::::
from

:::
an

::::::::
observed

:::::::::
network,

::
is

:::::::
needed

::
in

:::::
most

::::::::
domains

::
of

::::::::
network

:::::::
science.

:::
In

::::
this

:::::::
section,

:::
we

:::
list

::::::
three

::::::::::
motivational

:::::::::
examples

::
of

:::::::
usages

::
of

::::
such

:::::::
models,

:::
for

::::::
which

::::::::::
Structify-net

::::::::
provides

::
a

::::::
simple

:::::::
practical

::::::::
solution.

:::::
These

::::::::
examples

::::
are

::
in

::
no

::::
way

:::::::::
exhaustive

:::::
since

:::::::
random

::::::::
networks

:::
are

:::::
used

::
in

:::::
many

:::::
other

:::::::
contexts

::
in

::::::::
network

:::::::
science.
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Reference model

When one is interested in studying a network property, such as the transitivity or the homophily of a node
attribute, one usually needs a random graph model as a reference. The most commonly used

:::::::
simplest

::::
one

::
of

:::::
them is the Erdős–Rényi (ER) random graph model,

::
in
::::::
which

::::
only

:::
the

::::::
nodes

::::
and

:::
the

::::::::
expected

:::::::
number

:::
of

:::::
edges

:::
are

:::::::::
preserved; but in some

:::::
most cases, one would like to compare with another reference model

:::::
other

::::::::
reference

:::::::
models. For instance, when studying the transitivity, one might wonder if the observed transitivity

of a network is significantly higher than the transitivity of a similar graph having a spatial structure, a block
structure, or a strong degree

::
of

:
heterogeneity, etc. To explore those hypotheses, one needs a generative

model to generate random networks having the same number of nodes and edges as the observed network,
but with a particular structure

:
.

Influence of structure on diffusion
::::::::::
Benchmark

:::
for

::::::::
network

::::::
tasks

Diffusion
:
A

:::::::::
generative

::::::
model

::::
can

::::
also

::
be

:::::
used

:::
as

:
a
::::::::::
benchmark

:::
to

::::
test

:::::::::
algorithms

:::
for

::::::::
complex

::::::::
network

::::
tasks

::::::::::
developed

::
for

:::::::::
capturing

:::::::::::
fundamental

::::::::
patterns

::
of

::::::::
networks

::::
and

::::
their

:::::::::
functions.

::
A
::::::::
common

::::
task

::::::
where

::::::::
synthetic

::::::::
networks

:::
are

::::
used

::
to

::::::::
evaluate

:::
the

::::::::::::
performances

::
of

::
an

:::::::::
algorithm

:
is
::::::::::
community

:::::::::
detection,

:::::::
namely

:::
the

:::
task

:::
of

:::::::::
identifying

::::
—in

::
its

:::::::
general

:::::::::
intuition—

:::::::::::::
well-connected

:::::::
and/or

::::::::::::
well-separated

:::::::
groups

::
of

:::::
nodes

::::::
within

::
a

:::::::
network

::::::::::::::::::::::
(Fortunato and Hric, 2016

:
).

::::::::::
Generators

::::
with

::::::
planted

:::::::::::
communities

::::
are

::::
used

::
to

::::::::
estimate

:::
the

:::::::::
agreement

:::::::
between

:::::
their

:::::::::::
ground-truth

:::::::::
structure

::::
and

:::
the

::::::::::::
communities

::::::::
captured

:::
by

::
an

::::::::::
algorithm,

::
as

:::
for

::::::::
instance

::::
the

:::
LFR

::::::::::
benchmark

:::::::::::::::::::::
(Lancichinetti et al., 2008

:
).
:::
To

::::
test

:::
the

::::::::::
robustness

::
of

:
a
:::::
wide

::::::
variety

::
of

::::::::::
algorithms

:::::::
defined

:::
for

:::::::
different

:::::::::
purposes,

::::
one

::::::
needs

::::::::::
generators

::::
able

::
to

::::::
model

::
a
::::
wide

::::::
range

::
of

:::::::
planted

::::::::::
structures

::::::::
capturing

::::
the

:::::::::
properties

:::
one

:::::::
intends

:::
an

::::::::
algorithm

:::
to

::::::
handle.

::::::
These

:::::::::
properties

::::
can

:::::
range

:::::
from

::::::
density

:::
to

::::::::::
homophily,

::::
plus

:::
any

::::::::
preferred

:::::::::::
combination

:::
of

::::::::
structural

:::::::::
properties

:::::::
leading

::
to

::::::
clique-,

:::::
grid-,

::::
and

:::::::::
star-based

:::::::::
structures,

:::::::
among

:::::
others

::::::::::::::::::::
(Yamaguchi et al., 2020

:
).
:

::::::::
Influence

:::
of

:::::::::
structure

::
on

::::::::::
dynamical

:::::::::
processes

:::::::::
Dynamical processes on networks,

::::
such

:::
as

::::::::
diffusion

::
or

::::::::::::::
synchronization, have been studied for a long time,

for instance in the context of the .
:::::::
Typical

::::::::
examples

::::::
would

:::
be

:::
the diffusion of pandemics , or disinformation

::
or

::::::::::
polarization

:
on social media. The structure and properties of the network are well-known to have various

effects on the diffusion : faster diffusion due to degree heterogeneity Barthélemy et al., 2004, the influence of
community structure Peng et al., 2020, or clustering Zhuang et al., 2017

:::::
these

:::::::::
processes.

:::
For

::::::::
instance,

::::::::
diffusion

:::::
speed

::::::::
depends

:::
on

:::::::
degree

::::::::::::
heterogeneity

:::::::::::::::::::::
(Barthélemy et al., 2004),

:::::::::::
community

::::::::
structure

:::::::::::::::
(Peng et al., 2020

:
)

:::
and

:::::::::
clustering

:::::::::::::::::
(Zhuang et al., 2017

:
),
:
etc. In order to experiment

::::
with which factors might control the speed

and scale of a particular diffusion process, one should compare such processes with random networks that
1)are comparable in terms of size, i.e., number of nodes and edges, and 2)differ in their structure.

Method

2
::::::::::
Method

Structify-Net principle is to create probabilistic random graph generators in two steps:
1. A rank function R sets an order among the node pairs, from most likely to appear to less likely to

appear;
2. A probability function P assigns to each pair of nodes a probability to be connected by an edge, based

on its rank.
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Figure 1. Generating networks using the Structify-Net approach. A rank function defines an ordering between
node pairs. A probability function is used to assign an edge probability to each node pair based on their rank
in the ordering. This gives a Random graph model, that can be used to generate graph instances. Note how
the same Rank function R1 can give 2 Random Graph Models using different Probability function

::::::::
functions

P1 and P2, how the same Probability function P1 is used for two different Rank functions R1 and R2, and
how multiple graphs can be generated from a single Random Graph Model.

P allows to control the expected number of edges m̂. The functionP is independent from the graph structure
represented by R; and reciprocally R is independent from the expected number of edges m̂ or the function
P .

Rank function

2.1
::::::
Rank

:::::::::
function

The principle of Structify-Net generator is to describe a network structure by an edge-pair ranking function.
More formally, we define R(u, v) = r the function assigning a value r to each undirected node pair, such
as r ∈ [1, n∗(n−1)

2 ] corresponds to the rank of the node pair (u, v), and r(u, v) < r(u2, v2) means that it is
more likely to observe an edge between the pair (u, v) than between the pair (u2, v2). This function can be
expressed directly in that form, or be trivially derived from a function R′ assigning a cost to each node pair,
coupled with a sorting function, ranking pairs by increasing or decreasing values of R′(u, v). In practice, in
that case, we also add an infinitesimal random value ι to each cost, in order to avoid ties.

An intuitive example of such a cost function is for the spatial structure: given a position vector Wu for
each node u (provided to mimic real data, or generated in fully synthetic network generation), the tendency
to observe edges can be a function of the distance, e.g., R′(u, v) = ||Wu,Wv||. By sorting node pairs by
increasing distance, we obtain a spatial structure such that the closer the nodes, the higher their tendency to
be connected.

Section 3 describes in more detail various types of network structures that can be represented this way.
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Probability Function

2.2
::::::::::::
Probability

::::::::::
Function

To go from a ranking of node pairs to a random network generator, we use a rank probability function
P (r) = p, p ∈ [0, 1]

::::::::
assigning

:
a
::::::::::
probability

::
to

::::
each

:::::
rank,

:::
i.e.,

:::::::::::
P (r) ∈ [0, 1]. The only constraint to this function

is that it must be non-increasing, so that a node pair of lower rank is at least as likely to be connected by an
edge than a node pair of higher rank.

The probability function controls the expected number of edges:
m̂ =

L∑
r

P (r)

with L = n(n−1)
2

Endpoint 2

Endpoint 1

Control point

(a) Bezier
::::
Bézier

:
interpolation of the number of edges

encountered at a given rank
(b) The corresponding probability function, i.e., proba-
bility of observing an edge at a given rank

Figure 2. Example of probability functions for various values of ϵ. In this example, we setm = 128, n = 512

Bezier
::::::
Bézier Interpolated Probability Function

We propose a family of probability functions controlled by 1) the target expected number of edges m, 2)
a parameter ϵ, which controls how strongly is the random graph driven by the community

::::::
planted

:
structure.

The family is defined as follows: at one extreme (ϵ = 1), the probability of observing an edge is independent
of the rank, i.e., P (r) = m/L, as in an ER random graph. Conversely, at the other extreme ϵ = 0, them edges
connect them pairs of nodes of lower rank:

P (r) =

0 if r ≤ m

1 otherwise
To interpolate between the two, we use a rational Bezier

:::::
Bézier parametric curve, as illustrated in Fig. 2. The

Bezier
:::::
Bézier curve is defined by two endpoints, corresponding to the two points shared by both cumulative

distributions: the points (0,0) and (L,m). The control point of the curve is (m,m). A weight b allows controlling
how close the curve is to each of the two extremes. If b = 0, the curve corresponds to ϵ = 0, and ϵ(limb→∞) =

1. For convenience, we thus simply rescale the given parameter ϵ into b as follows:
b =

log(0.5)

log(1− ϵ)

By convention, if ϵ = 0, b = bmax and if ϵ = 1,b = 0, with bmax a large integer constant.
The function giving the probability of observing an edge between node pairs given their rank is defined by

the derivative of the parametric Bezier
:::::
Bézier curve (See Fig. 2).
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:::
The

::::::
choice

::
of

::::
the

:::::
Bézier

::::::::::
parametric

:::::
curve

::::::
arises

::
as

::
a

::::::
natural

:::::::
solution

:::
to

:::
the

:::::::
problem

:::
as

::::::::::
introduced

::
in

:::
Fig.

:::
2a:

:::
the

:::::
curve

:::
for

:::::
ϵ = 0

::::
and

:::::
ϵ = 1

:::
are

::::::::::::
independent

::
of

:::
the

::::::::::::
interpolation

:::::::
method,

::::
the

::::::
chosen

::::::
family

::::::::
function

::::::
should

::::
thus

::::::::
propose

:
a
:::::::
smooth

::::::::::::
interpolation

:::::::
between

::::
the

::::
two.

::::
The

::::::
Bézier

:::::
curve

:::::::
answers

::::
this

::::::::
problem

::
in

::
a

:::::::::
convenient

::::
way,

::::::::
although

:::::
other

:::::::::
functions

:::::
could

::
be

:::::
used.

:

Figure 3. The Structure Zoo. Matrix of node-pairs ranks for networks with 128 nodes. Darker colors corre-
spond to lower ranks. For Disconnected cliques, we setm = 128 ∗ 8. When involving spatial or clique positions,
nodes are ordered according to this value.

Structure Zoo

3
:::::::::::::
Structure

:::::
Zoo

To illustrate the expression power of the Structify-Net rank generation approach, we propose a collection
of structures, available in the Python library under the name of Structure Zoo. This collection contains both
classic structures widely found in the literature, together with original ones. Fig. 3 introduces matrix repre-
sentations of the node-pair ranks of all structures in the zoo.

:::
The

:::::::::
structures

::
in

:::
the

::::
Zoo

:::
are

::::
only

:::
to

::
be

::::::
taken

::
as

:::::::::
examples,

::::::
chosen

:::::::::
arbitrarily

:::::::
among

:
a
::::
few

::::::::::
well-known

::::::::
structure

:::::
types,

::::
and

::
a

:::
few

:::::::
original

:::::
ones.

::::
The

:::::
main

::::::
interest

:::
of

::::::::::
Structify-Net

::
is
:::
for

:::
the

:::::
users

::
to

:::
be

::::
able

::
to

::::::
specify

:::::
their

::::
own

::::::::
structure

::::
with

::::
their

::::
own

::::
rank

:::::::::
functions.

:::
The

::::
Zoo

::::
only

:::::::::
represents

::
a

:::
set

::
of

:::
toy

:::::::::
examples.

:

Spatial structure

3.1
::::::::
Spatial

::::::::::
structure

Spatial structures are commonly found in the literature. Several versions of random graphs spatial models
exist, for instance, the Waxman Graph (Waxman, 1988). More complex versions exist such as the Gravity
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model (Cazabet et al., 2017). A simple spatial structure can be easily implemented as a Rank model by using
a cost Function,

R′(u, v) = d(Wu,Wv)

with d(u, v) a notion of distance, such as Euclidean or Haversine distance. W is a matrix such asWi is a vector
representing the position of the node in a d dimensional space. Positions can come from observed data, or
be generated. In Fig. 3, we attributed to nodes random positions in a 1-dimensional space.

Assortative block structure

3.2
:::::::::::::
Assortative

::::::
block

:::::::::::
structure

Community structure is one of the best-known types of organization of networks. A simple way to im-
plement such a structure as a random graph generator is to use the stochastic Block Model (SBM), with a
constraint of having an assortative structure, i.e

:::
i.e., edges are more likely to be present between nodes affil-

iated to the same community than to nodes affiliated to different ones. A simple way to implement this as a
rank model is using the following cost function:

R′(u, v) =

0, if Bu = Bv

1, otherwise
With B the block affiliation vector, such as Bi identifies the block to which node i is affiliated with. Of course,
many variants are possible, for instance, to take into account the size of blocks/communities.

Overlapping Assortative Block structure

3.3
:::::::::::::
Overlapping

:::::::::::::
Assortative

:::::::
Block

::::::::::
structure

A variant of the block structure allowing nodes to have multiple affiliations. There are numerous ways to
model this situation. In the example provided here, we keep the same threshold cost function as for the
non-overlapping case, extending it to multiple affiliations, i.e., we use the following cost function:

R′(u, v) =

0, if (Bu ∩Bv) ̸= ∅

1, otherwise
with Bu the set of blocks to which node u belongs. In Fig. 3, each node belongs to exactly two communities ,
and the affiliations are chosen such as each community has half of its nodes shared with another community
c1 and the other half shared with another community c2.

Block Structure: Disconnected Cliques

3.4
::::::
Block

::::::::::::
Structure:

:::::::::::::::
Disconnected

::::::::
Cliques

Communities are often understood as sets of nodes that are strongly connected to each other and more
weakly connected to the rest of the graph. A special case of extreme community structure can be set up by
having only cliques, without links between them — disconnected cliques. Keeping the same threshold cost
function as for assortative blocks, we can find the value for community sizes such as we obtain

::::::::
obtaining

:
the

densest possible disconnected subgraphs for ϵ = 0, for a fixedm. Given the average degree k̂ = m
2n , we wantcliques to be of size nc⌈k̂⌉. Because n is not necessarily a multiple of nc, we set the number of communities

to ⌊ n
nc
⌋, and group the remaining nodes in an additional community. The already defined assortative block

structure is then applied as usual with those blocks.
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Nested structure

3.5
::::::::
Nested

:::::::::::
structure

Nested network structures are well-known in some fields, such as ecology and economics (Alves et al., 2019;
Mariani et al., 2019). A nested structure is a type of hierarchical structure, in which the properties/links of each
entity are subsets of the properties/links of entities at a higher hierarchical level. We implement this as follows:

R′(u, v) = u+ v

Where u, v are consecutive node indices in [1,n]. ,
::::
and

:::::
u < v

:

Star structure

3.6
:::::
Star

::::::::::
structure

Hubs are known to play an important role in many real networks. The hub-and-spoke structure is frequent
both in human-designed infrastructure and in natural systems, forming patterns also known as stars. We can
::::
One

:::
way

::
to

:
obtain such a structure with

:
is
:::
by

:::::
using

:::
the

::::::::
following

::::
rank

::::::::
function:

:

R′(u, v) = u× n+ v

::::::
Where

:::
u, v

:::
are

:::::::::::
consecutive

::::
node

:::::::
indices

::
in [

::
1,n],

::::
and

::::::
u < v.

Core Periphery

::
As

:::::
seen

::
in

:::
Fig.

::
3,

::::
this

::::
rank

:::::::
function

:::::
ranks

::::
first

:::
all

:::
the

::::
pairs

:::
of

:::::
nodes

::::::::
including

::::
the

::::
node

::
of

:::
ID

::
0,

::::
then

::
all

::::
the

::::
pairs

::
of

::::::
nodes

:::::::::
containing

:::::
node

::
ID

::
1

:::
and

::::::::
another

::::
node

::::
with

::
a

:::::
larger

:::
ID,

::::
and

::
so

:::
on

:::
and

:::
so

:::::
forth.

:::
The

:::::::::
structure

::::::::
therefore

:::::
tends

::
to

::::::
create

:::::
stars

::::
with

:::::
nodes

::
of

::::
low

:::
IDs

::
in

:::
the

:::::::
center.

3.7
:::::
Core

:::::::::::
Periphery

Core periphery structure is another well-known type of organization for complex systems. This organiza-
tion is often modeled using blocks, one block being the dense core, another block, internally sparse, repre-
senting the periphery, and the density between the two blocks is set at an intermediate value. To illustrate
the flexibility of the Rank approach, we propose a soft-core alternative, the coreness dissolving progressively
into a periphery. To do so, we consider nodes embedded into a

:::::
latent space, as for the spatial structure —

random 1d positions in our example. The node-pair rank score is computed as the inverse of the product
of 3 distances: the distances from both nodes to the center, and the distance between the two nodes. As a
consequence, when two nodes belong to the center, they are very likely to be connected; two nodes far from
the center are unlikely to be connected unless they are extremely close to each other.

R′(u, v) = d(Wu,Wv)d(Wu,0)d(Wv,0)

With
::::
with

:
0 the vector corresponding to the center of the location considered as

:::::
space,

::::
i.e., the core of the

space
::::::::
generated

::::::::
network.

Perlin noise

::::
Note

::::
that

::::
this

:
is
::::
only

:::
an

:::::::
example

:::
of

:
a
::::
rank

::::::::
function

::::::::::::
implementing

:
a
::::
soft

::::
core,

::::
and

:::
one

:::::
could

::::::::
imagine

:::::
many

::::::::
variations

::
of

::
it.
:
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3.8
:::::::
Perlin

::::::
noise

Perline noise (Perlin, 2002) is a type of gradient noise frequently used in computer graphics to create images
with a realistic feel, such as textures and landscapes. Weuse it to generate an adjacencymatrix, from theupper
triangle of a 2d image of size (in pixels) n×n. TheR′ cost function is the black intensity of the pixel. In practice,
Perlin noise tends to create continuous shapes of lower and higher values, with smooth transitions between
the two (see Fig. 3) for an example. Such a structure can be interpreted as a fuzzy version of a non-assortative
SBM; with stronger relations between some groups of nodes and some other groups of nodes. Perlin noise
has a parameter, called octaves, allowing to add

:::
the

:::::::
addition

::
of

:
smaller-scale structures on top of each other.

1

2

4 5

3

6

(a) Fractal Root tree embedding
1 2 3 4 5 6

(b) Fractal Leaves tree embedding
Figure 4. Two methods to create fractal structures by embedding nodes into complete binary trees. In the
example, we embed 6 nodes. In the simpler case, the probability to observe

::
of

:::::::::
observing a graph in the

resulting graph is proportional to the distance between the nodes in the tree.

Fractal structures

3.9
::::::::
Fractal

:::::::::::
structures

To better illustrate the expression power of the Structify-Net structure definition, we propose three varia-
tions of what we call fractal structures. The principle is to embed the nodes into a complete binary tree and to
compute the rank scores based on distances on that binary tree. The purpose is to introduce heterogeneity
among nodes, which can be used to create specific structures.
Fractal root

In the fractal root structure, we embed nodes of the graph in a complete binary tree of size n, and define
the cost function as the distance between nodes in the embedding tree (Fig. 4), R′(u, v) = dT (u, v), with dT

the geodesic —shortest path— distance between the nodes in the embedding tree.
Fractal leaves

In the fractal leaves structure, we create a complete binary tree such as
::::
that

:
the number of leaves is n

(Fig. 4). We embed nodes of the network on the leaves and use the distance between them in the graph as
the cost function. This creates a kind

:::
(see

::
3)
::
a
::::
sort of Matryoshka doll,

::::::::::
hierarchical

:
block structure, in which

—considering that edge probability decreases with distance without reaching zero— small dense blocks are
contained into larger, sparser blocks, recursively.
Fractal hierarchy

::::
root

In a seminal paper (Ravasz and Barabási, 2003), hierarchical structure in networks has been defined as
having a

:::
the

:::::
fractal

:::::
root

::::::::
structure,

:::
we

:::::::
embed

::::::
nodes

::
of

::::
the

:::::
graph

::
in

::
a
::::::::
complete

::::::
binary

::::
tree

:::
of

:::
size

:::
n,

::::
and

:::::
define

::::
the

::::
cost

:::::::
function

:::
as

:::
the

::::::::
distance

:::::::
between

::::::
nodes

::
in

::::
the

::::::::::
embedding

::::
tree

::::
(Fig.

::
4),

::::::::::::::::::
R′(u, v) = dT (u, v),

::::
with

::
dT

:::
the

::::::::
geodesic

:::::::::
—shortest

::::::
path—

::::::::
distance

:::::::
between

:::
the

::::::
nodes

::
in

:::
the

::::::::::
embedding

::::
tree.

::::
This

::::::::
structure

::::
has
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:::::::::
similarities

::::
with

:::
the

::::::::
previous

::::
one,

:::
but

::::::::::
introduces

:
a
:::::::::
particular

::::
role

::
for

::::::
some

::
of

:::
the

::::::
nodes:

:::
the

::::
root

::::
and

::::::
nodes

::::
close

:::
to

:::
the

::::
role

::::
now

::::::
occupy

::
a
:::::::
central,

::::::
pivotal

::::
role,

:::::
since

::::
they

::::
are

::
on

::::
the

:::::::
shortest

:::::
paths

::::::::
between

::::::
nodes

:::
on

::::
their

:::::
rights

::::
and

::
on

:::::
their

::::
lefts.

::::
The

:::::::
network

:::
has

:::::
both

:
a
::::::::
hierarchy

:::
of

:::::
blocks

::::
and

:
a
::::
sort

::
of

::::::
central

::::
core

::::::::::
composed

::
of

:::
the

::::::
nodes

::::
close

::
to

::::
the

::::
root

::
of

:::
the

::::
tree.

:

::::::
Fractal

:::::::::
hierarchy

:::
The

::::::
fractal

::::::::
principle

::::
and

:::::::
custom

:::::
rank

:::::::
function

::::
can

:::
be

::::
used

:::
to

::::::
create

:::::::
random

:::::::::
networks

::::
with

:::::::::
particular

:::::::::
properties

::
of

::::::::
interest.

:::
For

::::::::
instance,

::
it
::::
has

:::::
been

:::::::
pointed

:::
out

::
in

::
a
:::::::
seminal

:::::::::::::::::::::::::::::
article(Ravasz and Barabási, 2003

:
)
::::
that

::::
most

::::
real

:::::::::
networks

::::
have

::
a
:
negative correlation between nodes’ individual clustering coefficient and

their degrees. This definition requires networks having
:
,
:::::
while

::::
most

::::::::
network

:::::::
models

::
do

::::
not

:::::::::
reproduce

::::
this

::::::::::
correlation.

::
In

:::
the

::::::
original

::::::
article,

::
a

:::::::
network

::::::
model

:::::
called

:::
the

:::::::::::
"hierarchical

:::::::
network

::::::
model"

:::
has

:::::
been

:::::::::
introduced

::
to

::::::::
generate

::::::::
networks

::::
with

:::::
these

::::::::::
properties.

::
To

:::::::::
reproduce

::::
the

:::::::
so-called

:::::::::
hirarchical

::::::::
property

::::::
—note

::::
that

:::::
many

:::::
other

::::::
notions

::
of

::::::::::
hierarchical

::::::::
networks

:::::
exist

:::
and

::::
that

:::
this

::
is

::::
only

:::
the

:::
one

::::::::::
introduced

::
in

:::::::::::::::::::::::
(Ravasz and Barabási, 2003

::
—

::::::::
networks

:::::
must

:::::
have

:
1) heterogeneous degrees, 2) a high average clustering coefficient, and 3) a con-

trolled relation between degrees and clustering coefficient. In the original article, such networks were created
through an iterative deterministic algorithm, replacing graph parts with predefined subgraphs until reaching
the target size. Instead, we propose here a rank-score approach, embedding nodes in a complete tree as in
the fractal root embedding. However, we propose to use a ternary tree instead of a binary one, to increase lo-
cal clustering. We then choose score functions

:
a
:::::
score

:::::::
function

:
such as: 1) leaves tend to have high clustering

and low degree, and 2) root and other nodes in the higher levels tend to have high degrees and low clustering
coefficients. The principle is thus to have a high probability to observe

:
of

:::::::::
observing

:
edges 1) between groups

of nodes at the bottom of the tree if they have close common ancestors and 2) between nodes at the top of
the tree and nodes at the bottom of the tree.

:::
The

::::::::
purpose

::
of

::::
this

:::::::
example

::
is
::
to

:::::
show

:::::
that,

::
by

:::::::::
designing

:::
an

::::::::::
appropriate

::::
rank

::::::::
function,

::::
one

:::
can

::::::
obtain

:::::::
random

::::::
graph

::::::::::
generators

::::
such

::::
that

:::
the

:::::::::
generated

:::::::
graphs

::::
have

::
a

:::::::
property

::
of

::::::::
interest.

The rank-score is then
::::
thus

:
defined as follows:

R′(u, v) =

D(Tu, Tv), if ANCESTOR(Tu, Tv)
S(Tu, Tv), otherwise

WithTu, the position of nodeu in the embedding tree,ANCESTOR a function such asANCESTOR(u, v) =

TRUE if u is an ancestor of v in the embedding tree. FunctionsD and S are scores capturing respectively a
Descendent and Sibling similarity. We use:

D(u, v) = min(h(Tu), h(Tv)) + h(T )− (max(h(Tu), h(Tv))

with h(T ) the global height of the tree and h(u) the height of node u, such as h(u) = 0 if u is a leaf, and
h(u) = h(T ) if u is the root of the tree. This function ranks first pairs of nodes that are far away in terms of
tree levels, with a value of 0 between the root and the leaves.

S(u, v) =

(d(Tu, Tv)− 2) + h(Tu), if h(Tu) == h(Tv)

d(Tu, Tv) + h(T ), otherwise
with d(u, v) the shortest path distance in the tree.
Discussion on the structure zoo

3.10
::::::::::::
Discussion

:::
on

::::
the

:::::::::::
structure

::::
zoo

Structures introduced in this structure zoo are only a few examples of the infinite number of possibilities
for structures that can be defined by cost functions. We stress that once such a cost function has been chosen,
we are able to generate graphs following them, with a chosen number of nodes and edges.
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The structures we introduced allow the generation of synthetic networks without prior data, but one can
perfectly define a cost function defined on node attributes, e.g., take a real network in which nodes are located
in space, belong to known groups, and have other characteristic attributes, and define a structure by using a
cost function taking all these attributes into account. Fig. 3 proposes a representation as matrices of all these
structures on a network of 128 nodes and 1048 edges.

Application: Swall World Structures

4
::::::::::::::::
Application:

::::::::
Swall

::::::::
World

::::::::::::::
Structures

One of the most famous properties of network structure is the so-called small world property. Introduced
in (Watts and Strogatz, 1998), it characterizes a network as being a small world if it has both 1) a high clustering
coefficient — significantly larger than in an ER random graph, 2) a short average distance— of the same order
of magnitude as in an ER random graph. This property, considered ubiquitous in real networks, has been
reproduced in (Watts and Strogatz, 1998) by progressively adding randomness to a regular network, built such
as the n nodes are ordered in a circle, and each node is connected to its k̂/2 neighbors in both directions. The
small world property emerges because, when we rewire edges at random, the average distance decreases
faster than the clustering coefficient — both being large in the regular network and low in the ER random
graph.

We conduct an experiment to observe how other structures behave in term
:::::
terms of small-worldness when

submitted to a similar experiment, i.e., starting with an archetypal structure, and adding noise progressively.

(a) The proposed rank matrix. It has
similarity with, e.g., the spatial one in
Fig. 3

(b) The small-world profile. As expected, the short path index increases signifi-
cantly while the clustering coefficient remains close to the original value when
increasing randomness

Figure 5. Replicating the Watts-Strogatz experiment

Reproducing the Watts-Strogatz experiment

4.1
::::::::::::::
Reproducing

::::
the

:::::::::::::::::
Watts-Strogatz

:::::::::::::
experiment

Watts-Strogatz rank model

To mimic the original small-world experiment, we define a rank-based structure using a cost function, pa-
rameterized by the number of nodes n and the desired average node degree k.

R′ =

0, if (v − u) mod (n− k/2) < k/2

1, otherwise
with u, v node indices taken from [0, .., n− 1]. The corresponding rank matrix is shown if Fig. 5a
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Scoring functions

In the original article, clustering coefficients and average distanceswere expressed as a fraction of the value
obtained for the regular structure. We cannot reuse this approach for multiple structures, having different
starting values. Instead, for the clustering, we directly use the average clustering coefficient score, CC(g) ∈
[0, 1].

For the average distance, we propose a scaled value defined as:

δ̂(G) =

0, if |G(G)|
n ≤ 0.9

1

1+max(0,d̂(G(G))−2)
, otherwise

withG(G) the largest connected component of graphG, and d̂(G) the average shortest path distance between
nodes of graphG.

The property of this score is that δ̂ ∈ [0, 1], with δ̂ = 1 if every node can reach any other node in two hops
or less (e.g., a full star structure), and δ̂ decreases quickly as the average distance d̂ increases.
Watts-Strogatz experiment replication

We use our setting to replicate an experiment similar in nature to the one in the original article. We used
the same parameters, i.e., n = 1000, k = 10. We progressively add randomness, from a deterministic network
to an ER random graph by varying parameter ϵ of the probability function. Fig 5b shows results coherent with
the original article: after adding some randomness, the short path index has increased significantly, while the
clustering coefficient still remains close to its value for the deterministic network.

Small-World profiles for other structures

4.2
:::::::::::::
Small-World

:::::::::
profiles

::::
for

::::::
other

::::::::::::
structures

We can apply the same process to the other structures defined in our structure zoo, with the same number
of nodes and edges. In Fig. 6, we observe a wide variety of behaviors.

• Fractal-hierarchy and maximal-star structures display a super-small-world behavior, having both short
paths and high clustering coefficients. This can be easily understood: their hierarchical nature creates a
giant hubmaximizing reachability. Fractal-hierarchy is designed such asmost nodes of low degree have
a high clustering coefficient, due to a local structure. On the contrary, in maximal stars, most nodes are
connected only to a few hubs, but since those hubs are connected to each other, they also have a high
clustering coefficient.

• Nested, overlapping communities, and Perlin noise seems, on the contrary, to be anti-small-world, with
both a low clustering coefficient and long paths. Again, this is due to different factors. For instance, the
nestedness and Perlin noise concentrate so many edge probability between a small subset of nodes,
that many nodes are disconnected, leading to the absence of a giant component —thus to an infinite
average distance. The overlapping community, instead, is created in a way that makes it look like the
original Watts-Strogatz circular structure, as can be observed in Fig. 3. Its low clustering coefficient
comes from 1)many nodes not having a degree of at least 2, or 2)structures being too large compared
to the number of edges, so that the probability to form

::
of

:::::::
forming

:
triangles is low.

• Other structures tend to follow a pattern roughly similar to the original article, with more or less pro-
nounced profiles. In some cases, the short distance score remains at zero until reaching a certain
amount of noise, due to the absence of a giant component.
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Figure 6. Small-World profiles of networks generated by generators of the structure zoo. Blue is clustering,
orange is the short path index (lower values correspond to longer paths). We observe super-small-world, e.g.,
fractal-hierarchy, anti-small-world, e.g., nestedness, profiles similar to the Watts-Strogatz network, e.g., spatial
or blocks assortative.

Python library

5
:::::::::::
Working

:::::::
With

:::::::
Node

::::::::::::::
Attributes

::
In

:::
the

::::::::
previous

:::::::
section,

::
we

:::::
have

::::
seen

:::
an

::::::::::
experiment

::
in

:::::::
random

::::::::
networks

:::::::
without

::::::::::::::::::
metadata/attributes,

:::
i.e.,

::::
with

::::::::::::::
interchangeable

::::::
nodes.

:::::::::
However,

::
as

::::::::::
mentioned

::
in

:::
the

::::::
model

:::::::::
definition,

::
it
::
is

:::::::
possible

:::
to

:::
use

::::
any

:::::
node

::::::::::
information

::
in

:::
the

::::
rank

::::::::
function.

:::
In

:::
this

:::::::
section,

:::
we

:::::::
provide

:::
two

::::::
simple

:::::::::::
motivational

:::::::::
examples.

:

::::
Let’s

:::::::
imagine

:::::::
working

::::
with

::
a
:::::::
dataset

::::
such

::
as

::
a

:::::
global

:::
air

::::::::
transport

::::::::
network.

::::::
Nodes

::::::::::
correspond

:::
to

:::::::
airports

:::
and

:::
are

:::::::::
identified

::
by

:::::
their

:::::
name,

::::::::
location,

::::
and

:::::::
country.

::::::
Edges

:::::
might

::::::::::
correspond

::
to

::::::
having

::
at

:::::
least

:::
one

::::::
direct

::::
flight

::::::::
between

:::
two

::::::::
airports.

::
To

:::::
study

::
a

:::::::
property

::
of

::::
such

::
a
:::::::
network,

:::
for

::::::::
instance,

::
its

:::::::::
clustering,

:::::::
average

::::::::
shortest

::::
path,

::
or

::::::::::
properties

::
of

:
a
::::
virus

::::::::
diffusion

:::
on

:::
that

::::::::
network,

::::
one

:::::
would

::::::
usually

::::::::
compare

::::
that

::::::::
property

:::
with

:::
its

:::::
value

::
in

::::::::
networks

:::::::::
generated

:::
by

::
a

::::::::
reference

::::
null

:::::::
model,

::::
such

:::
as

:::
ER

::
or

::::::::::::
Configuration

:::::::
model.

::::::::
Another

:::::::::
possibility

::::::
offered

:::
by

::::::::::
Structify-net

::
is

::
to

::::
use

:::
the

:::::
node

:::::::::
attributes.

:::
For

::::::::
instance,

:::
we

:::
can

::::::::
consider

::::
only

:::
the

::::::
airport

:::::::::
positions,

:::
and

::::
rank

:::::
node

:::::
pairs

:::::::::
according

::
to

:::
the

::::::::
distance

:::::::
between

:::::
them

::
in

::::
the

:::::::
dataset,

:::::
which

:::::::::::
corresponds

::
to

:::::
using

::::
the

:::::
Spatial

::::::::
structure

::::::
defined

::
in

:::
the

::::
Zoo,

:::::
using

:::::::::
metadata

:::::::
instead

::
of

:::::::
random

:::::::::
positions.

:::::::::::
Alternatively,

:::
we

:::::
could

::::
use

:::
the

:::::::
country

::::::::::
information

::
as

::::::::
metadata

::
to

:::
the

:::::::::
Assortative

:::::
Block

::::::::
Structure

::
of

:::
the

::::
Zoo.

::
Of

:::::::
course,

:
it
:::::
could

::
be

::::::::
possible

::
to

:::
use

::::::::::::::
already-existing

::::::::
methods

::::
such

:::
as

::::
block

:::::::
models

::
or

::::::
spatial

:::::::
models

::
to

:::
do

:::
the

::::::
same.

:::::::::::
Structify-Net

::::::
simply

:::::
offers

:
a
::::::::::
convenient

::::
way

::
to

:::
do

::
it,

:::
for

:::
any

::::::
model,

::::
just

::
by

:::::::::
providing

:::
the

::::::::::
appropriate

::::::::
function.

:

:::
But

::
it
::
is

:::
of

::::::
course

::::::::
possible

::
to

:::
go

:::
far

:::::::
beyond

::::::
simple

::::::
blocks

:::
or

::::::
latent

::::::
space,

::::
and

::
to

::::::::
propose

::
a

:::::::
custom

::::::
ranking

::::::::
function

::::::
based

::
on

::::
the

::::
case

::::::
study.

:::
For

::::::::
instance,

::::
one

::::
can

:::
use

::::::::
machine

::::::::
learning

::
to

::::::
design

::
a

:::::::
ranking

:::::::
function

::::::::
retaining

::::::::
complex

::::::::::
properties

::::
from

:::
an

:::::::::
observed

::::::
graph.

:::
In

::::
the

::::::
airport

::::::::
example,

::::
we

:::::
could

::::
use

::
a

:::::::::::
classification

::::::::
algorithm

:::::
such

:::
as

::::::
logistic

:::::::::
regression

:::
or

::
a

:::::::
decision

::::
tree

::
to

:::::
learn

:::::
how

::::
likely

::
it
::
is
:::
to

:::::::
observe

:::
an

::::
edge

::::::::
between

::::
two

::::::
nodes

:::::
given

:::::
their

::::::::::
properties.

:::::
From

::::
the

::::::::
observed

:::::::::
network,

:::
we

::::::
would

::::::
extract

::
a
:::
set

:::
of

::::::
training

:::::::::
examples

:::::::::::::::::::::::::::::::::::::::::::
{distance, sameCountry ∈ {0, 1}, edge ∈ {0, 1}},

::::
and

:::::
train

:
a
:::::::::
classifier,

:::::
which

::::
can

:::::
then

:::::
assign

::
a

::::
class

::::::::::
probability

::
to

:::::
each

:::::::::
node-pair.

::::
This

:::::::::
probability

::::::
would

:::
not

::::::::
however

:::
be

::::::
usable

:::::::
directly

::
to

::::::
create

:::
null

:::::::
models

:::::::::
preserving

::::
the

:::::::
number

:::
of

::::::
edges.

:::::::
Instead,

:::
we

::::
can

::::
use

:::
this

::::::::::
probability

:::
as

:
a
:::::
rank

::::::::
function,

::::
and
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:::::::
generate

::::::::
random

::::::
graphs

:::::
with

:
a
:::::::
chosen

:::::::
number

:::
of

:::::
edges

:::::
using

::::::::::::
Structify-Net.

::::
The

::::::::
structure

:::::::::
produced

::::
will

:::::::
preserve

::::::
some

::
of

:::
the

:::::::::
properties

:::::::
related

::
to

:::::::::
attributes

::
of

:::
the

:::::::
original

:::::
graph

:::::::::::
—probably,

:
a
::::::
higher

::::::::
tendency

:::
of

:::::::
airports

::
to

::
be

::::::::::
connected

:
if
::::
they

:::
are

:::::::
located

::
in

:::
the

:::::
same

:::::::
country

::::
and

:
if
:::::
they

:::
are

:::::
close

::
in

:::::
space.

:

6
:::::::::
Python

::::::::::
library

An important aspect of such a generator is to allow other researchers to use it for their own needs, whether
it be to generate networks according to a structure described in the structure zoo, or to define their own. We
thus release with this paper a pip installable python library Cazabet, 2023, together with its documentation1.
For convenience, the library is compatible with Networkx (Hagberg et al., 2008). Obtaining a rank model
corresponding to one of those defined in the zoo, such as the nested structure, is as simple as calling it:

1 import s t ruc t i f y _ne t . zoo as zoo
2 n=128
3 rank_model = zoo . sort_nestedness (n )

Generating a network as a Networkx object from it is straightforward:
1 import s t ruc t i f y _ne t . zoo as zoo
2 n=128
3 m=512
4 generator = zoo . sort_nestedness (n ) . get_generator ( epsi lon =0.5 ,m=m)
5 g_generated = generator . generate ( )

One can also define a custom structure by providing a rank-score function:
1 import s t ruc t i f y _ne t as stn
2 n=128
3 m=512
4
5 def R_nestedness (u , v , _ ) :
6 return u+v
7 rank_nested = stn . Rank_model ( n , R_nestedness )
8 g = rank_nested . generate_graph ( epsi lon =0.1 ,m=m)

The library allows easy plotting of the rank-score matrices and node-pair probability matrices, and more
generally reproduces all the content of the current article.

Discussion

This

7
::::::::::
Related

:::::::::
Works

:::::
Many

::::::
works

:::
can

:::
be

::::::
found

::
in

:::
the

:::::::::
literature

:::
on

:::
the

::::::::::
generation

::
of

::::::::
random

:::::::
graphs.

::
A

::::::::
complete

:::::::
survey

::
is

::::::
beyond

:::
the

::::::
scope

::
of

:::
this

::::::
paper;

:::
we

:::
will

:::::::::::
nevertheless

:::::
briefly

:::::::::
introduce

:
in
::::
this

::::::
section

:::
the

:::::
most

::::::::
common

:::::::
random

:::::
graph

:::::::
models

:::
and

:::::::
existing

::::::::
software

:::
for

:::::::
random

:::::
graph

:::::::::::
generation.

:::
We

:::
can

::::::
make

:
a
:::::::::
distinction

::::::::
between

::::::::::
generative

::::::
models

::::
that

::::
are

::::::::
designed

:::
for

::::::
model

:::::::::
parameter

:::::::::
inference,

:::
and

:::::
those

::::
that

:::
are

::::
not.

::::::
Models

::::::::
designed

:::
for

::::::::
inference

:::
are

::::::
usually

:::::::::
controlled

:::
by

:
a
::::::
limited

:::::::
number

::
of

:::::::::::
parameters,

:::
and

:::::
have

::::
some

:::::::::::
appropriate

::::::::
statistical

:::::::::
properties

:::::::
allowing

::
to

::::
infer

::::::::::
parameter

:::::
values

::
to

::::::
match

:
a
:::::::
specific

::::::::
observed

:::::
graph

::
or

::::::
series

::
of

:::::::::::
graphs(e.g.,

::::
SBM

:::
or

:::::::::::
latent-space

:::::::
models).

::::
On

:::
the

:::::::::
contrary,

:::::::::::::
generative-only

:::::::
models

::::
are

::::::::
designed

::
to

::::::::
generate

::::::
graphs

:::::
with

:::::
some

:::::::
specific

:::::::::
properties

::
in

:::::
order

:::
to

:::
use

:::::
them

::
in

:::::::::::
downstream

:::::
tasks

:::::
(e.g.,

:::
LFR

::
or

::::::::
Waxman

:::::::
graphs).

::::::::::::
Structify-Net,

:::::::
although

:::::::
defined

::
as

:::
an

::::::::::::::::
edge-independent

:::::::
random

:::::
graph

::::::
model,

::::::
rather

:::::::
belongs

::
to

:::
the

:::::::
second

::::::::
category,

::::
since

::
it
::
is

:::
not

::::::::
designed

:::
for

:::::::::
parameter

:::::::::
inference.

:

1https://structify-net.readthedocs.io/en/latest/
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7.1
::::::::::
Common

:::::::::
Random

:::::::::::
Network

::::::::
Models

:::
The

::::::::
simplest

::::
way

::
to

::::::::
generate

:::::::
random

:::::::
graphs

:
is
::::::::
certainly

:::
the

:::::::::::
Erdos-Renyi

::::
(ER)

:::::::
random

:::::
graph

:::::::
model,

::::
that

::
we

:::::::
already

::::::::::
introduced.

:::
ER

:::::::
random

:::::::
graphs

:::
are

::::
fully

:::::::::::::
homogeneous

:::
and

:::
do

:::
not

:::::
have

:::
any

:::::::::
particular

:::::::::
structure;

:::
but

:
a
:::::::::
controlled

::::::::
expected

::::
size.

::::::::::::
Configuration

:::::::
models,

::
in

:::::::::
particular

:::
the

::::::::
Chung-Lu

:::::::
version,

:::::
allow

:::
the

::::::::::
generation

::
of

::::::
graphs

::
of

:::::::::
controlled

::::
size

:::::::
without

::::::::::
mesoscopic

:::::::::::
organization

:::
but

::::::::::
preserving

:::
the

::::::
nodes’

:::::::
degrees.

:

:::::
Block

::::::::::
structures

:::::::::
Stochastic

:::::
Block

:::::::
Models

:::::
(SBM)

::::::
define

:::::::
random

::::::
graph

::::::
models

::::
with

:::::
block

::::::::::
structures.

::
In

:::::
their

:::::::
simpler

:::::
form,

::::
they

:::
are

:::::::
defined

:::
by

::::
two

::::
sets

::
of

:::::::::
attributes:

::
a
::::::
vector

:::::::
defining

::::
the

:::::
block

::
to

::::::
which

::::
each

:::::
node

::::::::
belongs,

::::
and

::
a

:::::
matrix

::::::::
defining

:::
the

:::::::
number

::
of

::::::
edges

:::::::
between

:::::
each

::::
pair

::
of

::::::
blocks.

:::::
They

::::
exist

::
in

::::::
various

:::::::
flavors,

:::
the

:::::::::
canonical

::::::
version

:::::
being

::::::::::::::::
edge-independent

::::::::::::::::::::::::
(Snijders and Nowicki, 1997

:
),
:::::
while

:::::::::::::
microcanonical

::::::::
versions

::::::::::::
(Peixoto, 2017

:
)

:::
are

::::
not.

::::::
These

::::::
models

::::
also

:::::
exist

::::
with

:::
or

:::::::
without

:::::
node

::::::
degree

::::::::::::
preservation.

::::
The

::::::::
literature

:::
on

::::
SBM

:::::::
mostly

::::::
focuses

:::
on

:::::::::
inference,

:::
but

::::
SBM

::::
can

:::::::
naturally

:::
be

::::
used

::
to

::::::::
generate

:::::::
random

:::::::::
networks,

:::::
either

:::
by

::::::::
choosing

::::::
model

::::::::::
parameters

::
or

:::
by

:::::
using

:::::
those

::::::::
obtained

:::::
after

:::::::::
inference.

::
A
:::::::
popular

::::
way

::
to

::::
set

::::::::
manually

:::
the

:::::::::::
parameters

:::
for

::::::
custom

::::::::
structure

::::::::::
generation

::
is

::
to

::
fix

:
a
::::::::
number

::
of

:::::
blocks

::::
and

:
a
::::::::
number

::
of

:::::
nodes

::
in

:::::
each

:::::
block,

::::
then

::
to

:::::::
choose

::
an

:::::::
internal

::::
edge

::::::::::
probability

:::
pin::::

and
::
an

:::::::
external

::::::::::
probability

::::
pout.:::::::

Usually,
::::::::::
pin > pout,::::

thus
:::::::
defining

::::::::::
assortative

::::::
blocks.

::::::::
Arbitrary

:::::
block

:::::::::
structures,

:::::
with

:::::::
different

:::::
block

:::::
sizes

::
or

::::::::::::::
non-assortative

:::::::::
structures

::::
can

::
be

:::::::
defined

:::
by

::::::
setting

:::
the

::::::::::
parameters

:::::::::::
accordingly.

:::::::
Multiple

:::::::
variants

::
of

:::::
block

:::::::
models

::::
exist,

:::::
such

::
as

::::::::::
overlapping

::::::::::::::::::::::
SBM(Latouche et al., 2009

:
)
::
or

::::::::::
hierarchical

:::::
ones

::::::::::::::::
(Schaub et al., 2023

:
).
:::::
Block

:::::::
models

:::
can

::::
also

::
be

:::::
used

::
to

::::::::
generate

:::::::::::::
core-periphery

:::::::::
structures,

:::::::
typically

:::
by

::::::
setting

:::
one

::::
core

:::::
block

::::
and

::::
one

::
or

:::::::
several

:::::::::
peripheral

::::::
blocks.

::::
This

::::::::
structure

::::::::
however

::::::
cannot

::::::::
generate

:::::
other

:::::
types

:::
of

:::::::
possible

:::::::::::::
core-periphery

:::::::::
structures,

:::::
such

::
as

:
a
::::::::::
continuous

:::::::
change

::::::::
between

::::
core

:::
and

::::::::::
periphery.

:
A
:::::::
popular

:::::::
random

::::::
graph

::::::::
generator

::::
with

::::::::::
community

::::::::
structure

::
is

:::
the

:::
LFR

::::::::::::::::::::::::::::::
Benchmark(Lancichinetti et al., 2008

:
).
::::
Not

:::::::::
designed

:::
for

:::::::::
inference,

:
it
::::::
allows

::::
the

::::::::::
generation

::
of

::::::::
networks

:::::
with

:::::::
realistic

:::::::::
properties

::::
with

::
a
:::::::
limited

:::::::
number

::
of

:::::::::::
parameters,

::::
thus

::
in
::
a
:::::
more

::::::::::
convenient

::::
way

:::::
than

::::
with

::::::::
manually

:::::::::
initialized

:::::
SBM.

:
A
::::::
more

::::::
recent

::::::
variant

::::::
solving

:::::
some

::
of

::::
the

::::::::
problems

::
of

::::
LFR

::
is

:::
the

:::::
ABCD

:::::::
random

::::::
graph

::::::::::::::::::::::::::
generator(Kamiński et al., 2021

:
).
:

::::::
Latent

:::::
space

:::::::::
structure

:::::::
Various

::::::
models

::::
exist

::
to

::::::::
generate

:::::::
random

::::::
graphs

::
in

::::::
which

:::::
nodes

:::
are

::::::::::
embedded

:::
into

::
a

:::::
space,

:::
the

::::::::::
probability

::
of

:::::::::
observing

:::
an

::::
edge

::::::::::
depending

:::
on

::::
the

:::::::
distance

::::::::
between

::::::
them.

:::::::
Among

::::::::
popular

:::::::::
examples,

:::
we

::::
can

::::
cite

:::::::
Random

:::::::::
Geometric

:::::::
Graphs

:::::
(RGG,

:::::::::::::::::::::::
Dall and Christensen, 2002

:
),
::
in

:::::
which

::::::
nodes

:::
are

:::::::::
connected

::
if

::::
their

::::::::
distance

:
is
::::::
below

:
a
::::::::::
parameter,

:::
and

::::::::
Waxman

::::::
Graphs

::::::::::::::
(Waxman, 1988

:
),

:
in
::::::
which

::::
edge

:::::::::
probability

:::::::::
decreases

::::::::::::
exponentially

::::
with

:::
the

::::::::
distance.

::::
The

::::::
gravity

:::::::::::::::::
model(Wojahn, 2001

:
)
::
is

::
an

::::::::::
alternative

::
in

:::::
which

::::
the

:::::::::
probability

::
of

:::::::::
observing

:::
an

::::
edge

::::::::
depends

::::
both

:::
on

::::::
nodes’

:::::::
degrees

::::
and

:::
on

:
a
::::::::::
deterrence

:::::::
function

::::::::::
controlling

:::
the

::::::::
influence

::
of

::::::::
distance

:::
on

::::
edge

::::::::::
probability.

::::
The

:::::::::::
parameters,

::
in
:::::::::
particular

::::
the

:::::::::
deterrence

::::::::
functino,

::::
can

::::
also

:::
be

:::::::
inferred

:::
to

::
fit

::
a

:::::
given

::::::::
observed

:::::::
network

::::::::::::::::::
(Cazabet et al., 2017

:
).
::::::
Latent

:::::::
spaces

:::
are

::::
not

::::::
limited

::
to

::::::::::::
geographical

::::::
space,

::::
and

:::::::
models

::::
have

:::::
been

::::::::
proposed

:::
for

:::
the

:::::::::
inference

::
of

:::::
social

:::::::
spaces,

:::
for

:::::::
instance

::::::::::::::
(Hoff et al., 2002

:
).
:

:
A
::::::
model

:::::::
related

:::::
both

::
to

:::::
SBM

::::
and

::
to

::::::
spatial

:::::::
models

::
is
::::
the

::::::::
Random

::::
Dot

:::::::
Product

::::::
Graph

:::::::
(RDPG)

::::::
model

::::::::::::::::::::::::::
(Young and Scheinerman, 2007

:
).
::::::
Nodes

:::
are

::::::::::::
characterized

::
by

::
a

:::::
vector

:::::::
defining

:::::
their

::::::::
positions

::
in

:
a
:::::
latent

::::::
space,

:::
and

:::
the

::::::::::
probability

::
of

:::::::::
observing

::
an

:::::
edge

::::::::
between

:::::
nodes

::
is

:::::
given

::
as

::::
the

:::
dot

:::::::
product

::::::::
between

::::
their

:::::::
vectors.

:

:::::
Some

:::::::
authors

::::::::
consider

:::::::
instead

::::
that

::::::::
networks

:::
are

::::::
better

:::::::::::
represented

::
in

:::::::::
hyperbolic

::::::
space,

:::::::
leading

::
to

::::
the

::::::::::
proposition

::
of

:::::::::
Hyperbolic

::::::::
random

:::::
graph

::::::::::
generators

:::::::::::::::::
(Aldecoa et al., 2015

:
).

::::::::::
Homophily

:::::
Other

::::::::::
generators

::::::
model

:::::
edge

:::::::::::
probabilities

::::::::::
depending

:::
on

:::
the

::::::
nodes’

::::::::::
attributes.

:::::
They

:::::
allow

:::
to

:::::::
analyze

:::
the

::::::::
interplay

::::::::
between

:::::::::
similarities

:::
in

::::::::
structure

:::::
(e.g.,

::::::::
common

::::::
friends

::
in
::::::
social

:::::::::
networks)

::::
and

:::::::::
similarities

:::
in

::::
node

:::::::::
attributes

:::::::::::::::::::
(Asikainen et al., 2020

:
),

::
or

::
to

::::::::::
investigate

:::::::::::
mechanisms

::
of

:::::::::::::
non-structural

:::::::
closures

:::::
such

::
as

::::
the
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::::::::
formation

:::
of

::::
links

::::::::
between

:::::
nodes

:::::::
having

::::::
similar

::::::::
attributes

::::
that

:::
do

:::
not

::::::
share

::::::::
common

:::::::::
neighbors,

:::
as

:
a
:::::
base

::
of

::::
node

::::::::::
homophily

:::::::::::::::::
(Murase et al., 2019

:
).

:::::::
Generic

:::::::
random

::::::
graph

:::::::
models

:
A
:::::::::
difference

::::::::
between

:::::::
models

::::::::::
introduced

::::
until

::::
then

:::
in

:::
this

:::::::
section

:::
and

::::::::::::
Structify-Net

:
is
::::
the

:::::::::
restriction

::
to

::
a

:::::
single

::::
type

::
of

:::::::
network

:::::::::
structure.

:::::
Since

:::::::::::
Structify-Net

:::::::
accepts

:::
any

:::::::::
node-pair

::::::
ranking

::::::::
function

::
as

:::::
input,

::
it
::::::
allows

:::
the

:::::::::
generation

:::
of

:::::
block,

::::::
spatial,

::::
but

:::
also

::::::
other

::::
types

:::
of

:::::::::
structures

::::
such

::
as

::::::::::::::
core-periphery,

::::::::::
nestedness,

::::
etc.

:::::::
Another

::::::
family

::
of

:::::
highly

::::::::::
expressive

:::::::
random

:::::
graph

:::::::
models

::
is

:::
the

::::::::::
Exponential

::::::::
Random

:::::
Graph

::::::
Model

::::::
family

::::::
(ERGM,

::::::::::::::::
Lusher et al., 2013

:
).

::::::
ERGMs

::::::
define

:::
the

:::::::::
probability

::
of

:::::::::
observing

:
a
:::::
given

:::::
graph

::
G

::
as

::::::::::::::::::
P (G) = exp(Θ·X(G))

c(Θ) ,
::::
with

::
Θ

:
a
::::::
vector

::
of

::::::::
network

::::::::::
parameters,

::::::
X(G)

:::::::
network

:::::::::::::
characteristics,

::::::::
including

:::
for

::::::::
instance

:::
the

:::::::
number

:::
of

:::::::
triangles

::
or

:::::
node

::::::::::
properties,

:::
and

:::::
c(Θ)

:
a
::::::::::
normalizing

::::::::
constant

::::::::
ensuring

:::
that

::::
the

::::
sum

::
of

:::::
P (G)

:::
for

::
all

::
G

::
is

:::::
equal

::
to

::
1.

::::::
ERGMs

:::
are

::::::
mostly

:::::
used

:
in
::::
the

::::::
context

::
of

::::::
model

:::::::::
inference,

:::
and

:::::
allow

::
in

::::::
theory

::
to

::::::
model

:::::::::::::::
non-independent

:::::
edges,

::::
e.g.,

::::::
taking

:::
into

::::::::
account

:
a
:::::::
triangle

::::::
closure

:::::::::::
propension.

::::::::
However,

::::
due

::
to

:::
the

:::::::::::::
computational

::::::::::
complexity,

:::
this

:::::::::
approach

:
is
:::::::
limited

::
to

:::::
small

::::::
graphs.

:

::::::
Finally,

::
an

:::::::::
approach

::::::
sharing

:::::
some

::::::::::
similarities

::::
with

:::
our

:::::::::
framework

::
is

:::
the

:::::::
graphon

::::::::::::::
(Glasscock, 2015

:
),
::::::::::
contraction

::
of

:::::
graph

:::::::
function

:
,
::::
first

:::::::::
introduced

:::
in

:::::::::::
(Lovász, 2006

:
).
:::
A

:::::::
graphon

:::
can

::
be

:::::::
defined

::::::::::::::::::::
(Orbanz and Roy, 2014)

:::
as

::
a

:::::::
bivariate

::::::::
function

::::::::::::::::
W : [0, 1]2 → [0, 1].

:::::
That

:::::::
function

:::::::
returns

::
an

:::::
edge

:::::::::
probability

:::
for

::::
each

::::
pair

::
of

::::::
nodes,

::::::
based

::
on

::
a
:::::
node

:::::
latent

::::::::
variable.

::::::::::
Graphons

::::
were

::::
first

::::::::::
introduced

::::::
mostly

:::
as

::::::::::
theoretical

:::::::
objects,

::
in

:::
the

:::::::
context

:::
of

:::::::::
sequences

::
of

:::::
large,

::::::
dense

::::::
graphs.

:::::
More

::::::::
recently,

:::::
works

:::::
have

:::::::
focused

:::
on

:::
the

::::::::
inference

::
of

::::
this

:::::::::::::
nonparametric

::::::
model,

::
as

:::::::::::::::
smooth-graphons

:::::::::::::::::::::::::::
(Sischka and Kauermann, 2022a

:
)
::
or

:::::::::
combined

::::
with

::
an

::::
SBM

::::::::
approach

:::::::::::::::::::::::::::::::::::::::::::::::
(Orbanz and Roy, 2014; Sischka and Kauermann, 2022b

:
).
::::::
While

:::::::::
graphons

:::::
share

::::
the

::::::::
principle

::
of

:::::
using

::
a
::::::::
function

::
to

:::::::::::
characterize

::::
the

:::::::
network

:::::::::
structure

::::
with

::::
our

::::::::::
approaches,

:::::
they

:::
are

::::
part

::
of

::
a
::::
very

::::::::
different

:::::::::
literature.

:::::::::
Graphons

:::
are

:::::
more

::::::::
generic,

::
so

:::::
much

:::
so

::::
that

:::::
SBM,

::::::
spatial,

::::
and

::::::
nearly

::
all

::::::::::::::::::
latent-variable-based

:::::::::
statistical

::::::
models

::::
can

:::
be

::::::::::
considered

:
a
::::::
special

:::::
case

::
of

:::::::::
graphons.

:::
The

::::::::
literature

:::
on

:::
the

::::
topic

:::::::
focuses

::
on

:::::::::
inference

::::::::
problems,

::::
and

:::::::
notions

::::
such

::
as

::::::::
node-pair

:::::::
ranking

::
or

:::::::::::
randomness

::::::::::
parameters

:::
are

:::
not

::::::::
present.

:::
The

:::::::::::
Structify-net

::::::::::
framework

::
is
::::::
aimed

:::
to

::::
play

:
a
::::::::
different

::::
role

:::::::::
compared

:::::
with

::
all

::::::::
methods

::::::::::
introduced

:::
in

:::
this

:::::::
section.

::::::
ERGM

:::
and

:::::::::
Graphons

::::
are

:::::::
families

::
of

:::::::
models,

::::::::
designed

:::
for

::::::
model

::::::::
inference

::::::
rather

::::
than

::::::::
network

::::::::::
generation.

::::
They

:::
are

:::
so

::::::
general

::::
that

::::
they

:::
do

:::
not

::::
offer

:::::
much

::::
help

::
to

::::::
define

:
a
:::::::::
particular

::::::::
structure,

::::
and

:::
are

:::::
used

::
in

::::::
general

::
in
::
a
:::::::::
restricted

:::::::
context,

:::
for

:::::::
instance

::::
with

:::::::::::::::::::
block-approximations

:::
for

:::::::::
graphons,

:::
or

:::::::
imposed

::::::::
number

::
of

:::::::
triangles

:::
for

:::::::
ERGMs.

:::::
SBM,

::::::
gravity

::::::
models

::::
and

::::::::::::
configuration

::::::
models

:::
are

:::
on

:::
the

::::::::
contrary

:::::
more

::::::
specific

:::::
than

:::::::::::
structify-net,

:::::::
focusing

:::
on

:
a
::::::
single

::::
type

::
of

:::::::
network

:::::::::
structure.

::::::::::::
Furthermore,

::::
they

:::
are

:::::
often

:::::
used

::
in

:::
the

:::::::
context

::
of

::::::
model

::::::::
inference.

:::
On

::::
the

::::::::
contrary,

:::::
other

::::::
models

:::::
such

::
as

::::
LFR

::::::::::
benchmark

::
or

::::::::
Waxman

::::::
graphs

:::
are

:::::::::
designed,

::
as

:::::::::::
Structify-Net,

:::
to

::::::::
generate

::::::::
networks

::::
with

:::::::::
controlled

::::::::::
properties,

:::
but

::::
they

::::
also

:::::
focus

:::
on

::::
one

::::::
specific

::::
type

:::
of

::::::::
structure.

::::
Our

:::::::::::
contribution

::::
thus

::::::::
occupies

:::
an

:::::::
original

:::::::
position

::
in

:::
the

::::::::
scientific

:::::::::
landscape

:::
on

:::::::
random

:::::::
graphs:

:
it
::
is

::::::::
designed

:::
for

:::
the

::::::::::
generation

::
of

:::::::
random

:::::::
graphs

:::
and

::::
not

:::
the

::::::::
inference

:::::
task,

:
it
::
is

:::::
more

::::::
flexible

:::::
than

:::
LFR

:::
or

::::
SBM,

::::
and

:::::
offers

::
a

:::::
more

:::::::::
convenient

::::
way

::
to

::::::::
generate

::::::
graphs

:::
of

:::::::::
controlled

:::::::::
properties

:::::::::
compared

::::
with

:::::
ERGM

:::
or

:::::::::
Graphons.

7.2
::::::::::
Software

::::::
Several

:::::::::::
easy-to-use

:::::::
libraries

::::::::
propose

:::
to

::::::::
generate

::::::::
networks

:::::
with

::::::
blocks,

:::::::::
following

:::
the

:::::::::
Stochastic

::::::
Block

:::::
Model

:::::::::
approach.

:::::::
Among

:::
the

::::
most

::::::::
popular,

::
we

::::
can

:::
cite

::::::::
networkx

::::::::::::::::::
(Hagberg et al., 2008)

::::
and

::::::
iGraph

:::::::::::::::::::::::
(Csardi, Nepusz, et al., 2006

:
),
:::::
which

:::::::
include

::
an

:::::
SBM

:::::::::
generation

:::::::
function

::::::::
allowing

::
to

::::::
define

:::::
blocks

::
of

::::::::
arbitrary

:::::
sizes,

::::::::
arbitrary

:::::::::::
probabilities

::
of

:::::::::
observing

:::::
edges

::::::::
between

::::::
them,

::::
and

::::
then

::::::::
generate

::
a
::::::
graph

::::::::::
accordingly.

::::::
More

:::::::::
advanced

::::::::
functions

::::
are

::::::::
proposed

::
in

::::
the

:::::::::
graph-tool

:::::::::::::
(Peixoto, 2014)

:::::::
library,

::::::::
allowing

::
to

::::::::
generate

:::::::::::::
microcanonical

:
,
::::::::::::::::
degree-preserving

:::::::
versions,

::::
and

:::::::
several

:::::
other

:::::::
variants

::
of

:::::
block

:::::::::
structures.

:

:::
The

:::::
same

::::::::
libraries

:::::
offer,

:::::
under

::::
the

:::::
name

::
of

:::::::::
geometric

::::::
models,

:::::
some

:::::::::::
possibilities

:::
for

:::::::
spatially

:::::::::::
constrained

:::::::
network

:::::::::
structures.

:::::
Most

:::
of

:::::
these

::::::::
methods,

:::::::::
however,

::
do

::::
not

:::::
allow

::::::
setting

:::
the

:::::::
number

:::
of

::::::
edges,

::::
since

:::::
they
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::::::
instead

:::::::
require

::::::
setting

::
a

::::::::
threshold

::::::
below

:::::
which

::::::
edges

:::::
exist,

::
or

:::::
using

:::
an

:
a
:::::
priori

::::::::
function

::::::::
(Waxman

::::::::
random

::::::
graph).

:::::
Only

:::
the

::::::::
k-nearest

::::::::
neighbors

::::::
method

::::::
allows

::::
one

::
to

::::::
choose

::::
the

:::::::
number

::
of

::::::
edges

::::::
among

::::::::
multiples

:::
of

:::
the

:::::::
number

::
of

::::::
nodes,

::::
but

:
it
::
is

::
a

:::::::::::
deterministic

:::::::::
generator.

::::::
These

:::::::
libraries

::::
also

:::::::
contain

:::::
other

:::::
types

::
of

::::::::
network

:::::::::
generators

::::
with

:::::::::::
non-random

:::::::::
structures,

:::::
such

::
as

::::::
lattices,

:::
or

::::::::
networks

::::::
defined

:::
by

:
a
:::::::
process

::::
such

::
as

:::
the

:::::::::
forest-fire

::::::
model.

:::::::
Another

:::::::
notable

:::::::
network

:::::::::
generator

:
is
::::
the

:::
LFR

::::::::::
benchmark,

:::::
which

::
is

::::::::::::
implemented

::
in

::::::::
networkx

::
in

:
a
:::::::::
simplified

:::::::
version,

::
or

::::::::
available

::
as

::
a
::::::::::
standalone

::::
code

:::
to

::::
have

::::::
access

::
to

:::
all

::
its

::::::::
settings.

::::::::
Software

::
to

:::::
work

::::
with

:::::::::
graphons

:
is
::::::
much

:::::
more

::::::
scarce;

:::
we

::::::
found

:::
an

:
R
:::::::
library

::::::::::::
implementing

::::::::
graphon

::::::::
inference

::::
and

::::::::
graphon

:::::::
random

::::::
graph

:::::::::
generation

:

2;
::
a

::::::
recent

::::::
python

:::::
code

:::::
exists

:::::
also,

::::::::
although

:::
not

::
in
::::
the

:::::
form

::
of

:
a
::::::::::::
documented

::::::
library 3

:
.
::::::
These

:::::::
libraries

:::::::
however

:::::
have

:::::::
nothing

::
to

:::
see,

::
in

:::::
term

::
of

:::::
usage

::
of

::::::::::
capabilities,

::::
with

:::::::::::
Structify-Net.

:::::
They

:::
are

::::::::
designed

:::
for

:::::::::
completely

::::::::
different

::::::::
purposes.

::::
The

::::::::
reference

::::::
library

:::
for

:::::::
working

::::
with

:::::
ERGM

::
is

:::
the

:
R
:::::::
package

:
ergm

::::::::::::::::
(Hunter et al., 2008

:
)4
:
,
:::::::
focusing

:::
on

::::::
model

:::::::::
inference.

8
::::::::::::::
Discussion

::::
This article introduced a newmethod to generate random networks with a customizable network structure,

and a target number of nodes and edges, while controlling the amount of randomness. To the best of our
knowledge, this is the first randomnetwork generator allowing to do so. We think that having such a generator
opens doors to new research directions in network science, for studying the properties of networks with some
particular structures —as we have done in the experimental section, or as a reference model for observed
graphs, to name a few.

Moreover, one of themain strengths of the generator is its ability to control situations where a process/rule
of the structural organization (expressed by a pair-node rank) can be mixed with "unknown" random pro-
cesses (expressed by ϵ); thus, among the observed edges, some of them strictly follow the structural con-
straints imposed by the rank, and some of them can go beyond the explanation of such constraints. The
possibility to analyze this mix —between edges driven by the organization and randomness— is quite impor-
tant, especially given that network behaviors like small-worldness or homophily can be better explained when
randomness is added to a rule of connection (Talaga and Nowak, 2020).

Regarding the analysis of such network behaviors, another strength of the generator is the possibility to ex-
ploit the properties of nodes when defining a rank, thus including elements representing, in principle, physical
position, political opinions on a spectrum, gender, or even degree. We focused here on the distance between
vectors of nodes’ positions in a d dimensional space for building a spatial structure (cf. "Structure Zoo", 2.1).
We also focused on the affiliation to the same group for building an assortative block structure (cf. "Struc-
ture Zoo", 2.2). Similarities between such structures lead us to acknowledge the significance of incorporating
node metadata/attributes to generalize a wide variety of network behaviors. We focused here on analyzing
the small-world property, but the same can be applied to other behaviors. In principle, behaviors like ho-
mophily (McPherson et al., 2001), could be described just as a particular case of either a spatial organization
(if attributes are numerical) or of an assortative block structure (if attributes are categorical).

Limits and future work

8.1
:::::::
Limits

:::::
and

:::::::
future

::::::
work

The main limit of the current work is scalability: node-pair ranks and probability matrices are dense matri-
ces, which can bememory-demanding for large graphs. The generation process also requires an independent
randomdraw for each node-pair. These limits could be overcome in future work. Another limit is that network

2https://cran.r-project.org/web/packages/graphon/index.html
3https://github.com/BenjaminSischka/GraphonPy
4https://gvegayon.github.io/appliedsnar/the-ergm-package.html
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structures in which probabilities of observing an edge between a pair of nodes are not independent of adja-
cent ones —for instance, to generate random networks of a specific size and a specific clustering coefficient—
cannot be expressed by a rank-structure.

:::::::
Another

::::
limit

:::::::::
compared

:::::
with

:::::
some

:::::
other

:::::::
random

::::::
graph

:::::::
models

::::
such

::
as

:::::
SBM

::
or

:::::
RDPG

::
is

:::
the

::::::::
absence

::
of

:::
an

:::::::
efficient

:::::::::
inferential

::::::::
solution.

::
In

:::::::::
particular,

:::::::
without

::::
any

:::::::::
constraint

::
on

:::
the

:::::::::
node-pair

::::::
order,

::
an

:::::::::
inferential

:::::::::
approach

:::::
would

::::::
always

::::
find

:
a
:::::
trivial

:::::::::::::
uninformative

:::::::
solution

::
in

:::::
which

:::
all

:::::::::
connected

:::::::::
node-pairs

::::
are

::::::
ranked

:::::
first.

:::::
Note

::::::::
however

:::::
that,

:::::
since

:
it
::
is
::::::::
possible

::
to

:::::::::
compute

:::
the

::::::::::
probability

::
to

::::::
obtain

::
a

:::::
given

:::::
graph

:::
for

::
a
:::
set

:::
of

:::::::::::
parameters,

::
it

:::::
could

:::
be

:::::::
possible

:::
in

::::::
theory

::
to

::::
use

:::::::::::::::::
maximal-likelihood

::::::::
inference

::
on

::
a
::::::
subset

::
of

:::
the

:::::::
models,

::::
e.g.,

::
by

:::::
fixing

:::
the

::::::::
amount

::
of

:::::::::::
randomness

:
ϵ,
::::
and

:::::::::::
constraining

:::
the

:::::::
domain

::
of

:::::::::
acceptable

::::
rank

:::::::::
functions.

:Finally, in
:
In

:
future work, we plan to compare the properties of real-world networks with those of the syn-

thetic ones generated from structures such as those of the zoo. Having such a variety of possible structures,
we expect to be able to characterize real networks, by observing similarities and differences with the syn-
thetic ones, e.g., a real network might have a clustering coefficient and an average distance compatible with
the Watts-Strogatz network, but differ in degree heterogeneity and robustness, while another synthetic net-
work might have more similar properties in all those aspects. In particular, we will investigate the role of
randomness, to test the original idea of the Watts and Strogatz small-world definition, i.e., that randomness
is at the source of complex networks’ properties.
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