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Knowledge graphs [1–4] represent structured knowledge using nodes and edges, where nodes signify

entities and edges denote relationships between these entities. These graphs have become essential in various

fields such as cultural heritage [5], life sciences [6], and encyclopedic knowledge bases, thanks to projects like

Yago [7], DBpedia [8], and Wikidata [9]. These knowledge graphs have enabled significant advancements in

data integration and semantic understanding, leading to more informed scientific hypotheses and enhanced

data exploration.

Despite their importance, understanding the topology and dynamics of knowledge graphs remains a

challenge due to their complex and often chaotic nature. Current models, like the preferential attachment

mechanism, are limited to simpler networks and fail to capture the intricate interplay of diverse relationships

in knowledge graphs. There is a pressing need for models that can accurately represent the structure and

dynamics of knowledge graphs, allowing for better understanding, prediction, and utilisation of the knowledge

contained within them.

The paper by Lhote, Markhoff, and Soulet [10] introduces a novel approach to modelling the structure

and dynamics of knowledge graphs through the concept of superficiality. This model aims to control the

overlap between relationships, providing a mechanism to balance the distribution of knowledge and reduce

the proportion of misdescribed entities. This is the first model tailored specifically to knowledge graphs,

addressing the unique challenges posed by their complexity and diverse relationship types. The innovation

lies in the introduction of superficiality, a parameter that governs the probability of adding new entities

versus enriching existing ones within the graph. This model not only addresses the multimodal probability
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distributions observed in real KGs but also offers a more granular understanding of the knowledge distribution,

particularly the presence of misdescribed entities. The authors validated their model against three major

knowledge graphs: BnF, ChEMBL, and Wikidata. The results demonstrated that the generative model accurately

reproduces the observed distributions of incoming and outgoing degrees in these knowledge graphs. The

model successfully captures the multimodal nature and the irregularities in the degree distributions, especially

for entities with low connectivity, which are typically the majority in a knowledge graphs.

One significant finding is the impact of superficiality on the level of misdescribed entities. The study revealed

that lower superficiality leads to a more uniform distribution of relationships across entities, thus reducing

the number of entities described by few relationships. Conversely, higher superficiality results in a higher

proportion of entities with minimal descriptive facts, reflecting a paradox where increasing the volume of

knowledge does not necessarily reduce the level of ignorance. The authors also conducted an ablation study

comparing their model to traditional models like Barabási-Albert [11] and Bollobás [12]. The results showed

that the proposed multiplex model with superficiality parameters consistently outperformed these traditional

models in accurately reflecting the characteristics of real-world knowledge graphs.

This research provides a groundbreaking approach to understanding and modelling the structure and

dynamics of knowledge graphs. By introducing superficiality, the authors offer a new lens through which to

examine the distribution and organisation of knowledge within these complex structures. The model not only

enhances our theoretical understanding of knowledge graphs but also has practical implications for improving

data storage, query optimisation, and the robustness of knowledge induction processes.

The introduction of superficiality opens several avenues for future research and application. One potential

direction is refining the model to account for localised perturbations in smaller knowledge graphs or specific

domains within larger knowledge graphs. Additionally, longitudinal studies could further elucidate the evolution

of superficiality over time and its impact on the quality of knowledge representation. Another promising area is

the application of this model in real-time knowledge graphs management systems. By adjusting superficiality

parameters dynamically, it may be possible to optimise the balance between entity enrichment and the

introduction of new entities, leading to more robust and accurate knowledge graphs. In the broader context

of knowledge engineering and data science, this model offers a framework for exploring the vulnerability of

knowledge graphs and their susceptibility to various types of biases and inaccuracies. This understanding

could lead to the development of more resilient knowledge systems capable of adapting to new information

while maintaining a high level of accuracy and coherence.

Overall, the concept of superficiality and the associated generative model represent significant advancements

in the study and application of knowledge graphs, promising to enhance both our theoretical understanding

and practical capabilities in managing and utilising these complex data structures. It would be interesting to

see how this can be extended to domains in social network analyses [13,14].
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Reviewed by Mateusz Wilinski, 30 July 2023

Overall the work is interesting and potentially useful in improving data storage or to evaluate the robustness

of existing knoewledge graphs. Couple of questions and remarks on my side:

1. Authors could spend a bit more time when describing the whole concept of knowledge graphs. Although

I do not know what types of journals Authors are aiming, some extra figures and examples could make the

whole manusciprt much clearer for a non-specialist or a general reader.

2. What model do Authors use when they say Bollobas? Bollobas-Riordan? Though there is one citation, it is

not referred to in the description of the experiment (comparing different models).

3. I am slightly puzzled by the results on comparing Authors’ model with BA (their fits to data). Isn’t BA a

special case of the new described model? How can it be better for any instance then (outgoing ChEMBL for

example)? Does it even make sense to make a comparison in this case? Is it similar for Bollobas?

4. Could Authors add the other models’ fits to Fig. 1?

5. Authors claim, unless I missunderstood something, that their model capture the multimodality, but Fig. 1

does not seem to support that, especially in all the outgoing cases. There seem to be some other effect at play.

That is why seeing how does the shape compare to other models would be useful (see previous point).

Minor comments:

1. Multiplex is not the same as multilayer, it is a special case of the latter.

2. Shouldn’t the comparison between different models go to the main text?

3. The references use different styles: sometimes we have ”et al.” after the first author, sometimes after

four authors and sometimes we have all five authors mentioned. I would suggest to ”unify” it.

Reviewed by Tamao Maeda, 29 July 2023
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